$L(p, \infty)^*$

M. CWIKEL & Y. SAGHER

Communicated by Ralph Phillips

0. Introduction. $L(1, \infty)$, weak L^1 , was introduced in analysis when it was observed that some important operators (the Hilbert transform and the Hardy-Littlewood maximal function to name two) do not map L^1 into L^1 , but instead satisfy the weaker condition

$$\mu\{x\colon |(Tf)(x)|>y\}\leq C\frac{||f||}{y}.$$

It became natural therefore to investigate weak L^1 , the space of functions f satisfying

$$\mu\{x\colon |f(x)|\,>\,y\}\,<\frac{C}{y}\cdot$$

This space was subsequently incorporated into a two-parameter family of spaces, L(p, q), which also contains L^p spaces (L(p, p) in this notation). The interpolation properties of L(p, q) make them a very handy tool in some problems of harmonic analysis.

It is known that (except when taken over some trivial measure spaces) $L(1, \infty)$ is not normable. The question therefore arose as to whether any non-trivial continuous linear functionals on $L(1, \infty)$ exist. We show in this note that $L(1, \infty)^* \neq \{0\}$. It is worth noting that although for $1 < q < \infty$,

$$L(1, 1) \subset L(1, q) \subset L(1, \infty),$$

 $L(1, q)^* = \{0\}$ when the measure space has no atoms (see [1]). Therefore in this case any c.l.f. on $L(1, \infty)$ necessarily vanishes on all simple functions. For $1 it is known (see [1]) that <math>L(p, \infty)^* \supset L(p', 1)$. (Here and throughout this note (1/p) + (1/p') = 1.) We show that, except when the measure space consists of finitely many atoms, $L(p, \infty)^* \neq L(p', 1)$.

We wish to thank L. Zalcman for helpful discussions as a result of which the presentation was simplified.