Equivalences on Eigenvalues

SEYMOUR SHERMAN \& COLIN J. THOMPSON

Communicated by Mark Kac

1. Introduction. Let \mathfrak{m} denote the set of complex $n \times n$ matrices. Let $\mathfrak{H}, \mathfrak{u}$, and \mathfrak{p} denote the set of self adjoint, unitary, and positive definite matrices in \mathfrak{m}. One of us [1] has recently proved

Theorem 1. Let $X \varepsilon p$ and $Y \varepsilon \mathfrak{p}$. If $x_{1} \geqq \cdots \geqq x_{n}>0$ and $y_{1} \geqq \cdots \geqq y_{n}>0$ are the eigenvalues of X and Y, then
$(\exists U \varepsilon \mathfrak{u}) \operatorname{spec} Y=\operatorname{spec} X U$

$$
\begin{gather*}
\Leftrightarrow \tag{1}\\
x_{1} \geqq y_{1} \\
x_{1} x_{2} \geqq y_{1} y_{2} \\
\vdots
\end{gather*}
$$

$$
\begin{align*}
& x_{1} \cdots x_{n-1} \geqq y_{1} \cdots y_{n-1} \tag{2}\\
& x_{1} x_{2} \cdots x_{n}=y_{1} \cdots y_{n},
\end{align*}
$$

where spec Y denotes the eigenvalues of Y, each counted with its proper multiplicity.
The main theorem of this paper is concerned with dropping the requirement that Y ع p.

Theorem 2. Let $X \varepsilon p$ and $Y \varepsilon \mathfrak{m}$. If $x_{1} \geqq \cdots \geqq x_{n}>0$ and y_{1}, \cdots, y_{n} (normalized so that $\left|y_{1}\right| \geqq \cdots \geqq\left|y_{n}\right|>0$) are the eigenvalues of X and Y, then
$(\exists U \varepsilon \mathfrak{u}) \operatorname{spec} Y=\operatorname{spec} X U$
(4)

$$
\begin{align*}
& \Leftrightarrow \tag{3}\\
x_{1} & \geqq\left|y_{1}\right| \\
x_{1} x_{2} & \geqq\left|y_{1} y_{2}\right| \\
& \vdots \\
x_{1} \cdots x_{n-1} & \geqq\left|y_{1} \cdots y_{n-1}\right| \\
x_{1} \cdots x_{n} & =\left|y_{1} \cdots y_{n}\right| .
\end{align*}
$$

807
Indiana University Mathematics Journal, Vol. 21, No. 9 (1972).

