Equivalences on Eigenvalues

SEYMOUR SHERMAN & COLIN J. THOMPSON

Communicated by MARK KAC

1. Introduction. Let \mathfrak{m} denote the set of complex $n \times n$ matrices. Let \mathfrak{M} , \mathfrak{u} , and \mathfrak{p} denote the set of self adjoint, unitary, and positive definite matrices in \mathfrak{m} . One of us [1] has recently proved

Theorem 1. Let $X \in \mathfrak{p}$ and $Y \in \mathfrak{p}$. If $x_1 \geq \cdots \geq x_n > 0$ and $y_1 \geq \cdots \geq y_n > 0$ are the eigenvalues of X and Y, then

(1)

$$(\exists U \in \mathfrak{u}) \operatorname{spec} Y = \operatorname{spec} XU$$

$$\Leftrightarrow$$

$$x_{1} \geq y_{1}$$

$$x_{1}x_{2} \geq y_{1}y_{2}$$

$$\vdots$$
(2)

$$x_{1} \cdots x_{n-1} \geq y_{1} \cdots y_{n-1}$$

$$x_{1}x_{2} \cdots x_{n} = y_{1} \cdots y_{n},$$

where spec Y denotes the eigenvalues of Y, each counted with its proper multiplicity.

The main theorem of this paper is concerned with dropping the requirement that $Y \in \mathfrak{p}$.

Theorem 2. Let $X \in \mathfrak{p}$ and $Y \in \mathfrak{m}$. If $x_1 \geq \cdots \geq x_n > 0$ and y_1, \cdots, y_n (normalized so that $|y_1| \geq \cdots \geq |y_n| > 0$) are the eigenvalues of X and Y, then (2)

⇔

(3)
$$(\exists U \in \mathfrak{u}) \operatorname{spec} Y = \operatorname{spec} X U$$

(4)

$$x_{1} \geq |y_{1}|$$

$$x_{1}x_{2} \geq |y_{1}y_{2}|$$

$$\vdots$$

$$x_{1} \cdots x_{n-1} \geq |y_{1} \cdots y_{n-1}|$$

$$x_{1} \cdots x_{n} = |y_{1} \cdots y_{n}|.$$
807

Indiana University Mathematics Journal, Vol. 21, No. 9 (1972).