A Note on Trudinger's Extension of Sobolev's Inequalities

ROBERT S. STRICHARTZ

Communicated by JURGEN K. MOSER

N. Trudinger [4] has shown that functions with bounded support in the unit ball of $W_1^n(\mathbb{R}^n)$, the space of L^n functions having first order derivatives in L^n , satisfy the inequality

$$\int \left(e^{\alpha + f(x) + n/n - 1} - 1\right) \, dx \leq c$$

for some positive constants α , c. This is a substitute for boundedness, which holds for n = 1 and fails for n > 1.

We establish a more general inequality for functions in $L_{n/p}^{p}(\mathbb{R}^{n})$, the space of Bessel potentials of order n/p of L^{p} functions [2].

Theorem. Functions with bounded support in the unit ball of $L_{n/p}^{p}$ (\mathbb{R}^{n}), 1 , satisfy the inequality

$$\int \left(e^{\alpha + f(x) + p'} - 1\right) \, dx \leq c$$

for some positive constants α , c (depending on n, p and the support of f), where p' is the dual index 1/p + 1/p' = 1.

Remarks. Since $L_1^n(\mathbb{R}^n)$ and $W_1^n(\mathbb{R}^n)$ coincide and have equivalent norms, our result contains Trudinger's. We do not obtain Moser's refined estimate [1] for α , however. Simple examples of the form $|\log|x||^{\alpha}$ near x = 0 show that the exponent p' cannot be improved. The same result holds for the spaces $L_{n/p}^p(\Omega)$ for any bounded domain $\Omega \subseteq \mathbb{R}^n$ satisfying a cone condition (see [3]).

Proof of the Theorem. We begin by proving

(*)
$$||f||_{a} \leq A \left(1 + \frac{q}{p}\right)^{1/q+1/p'} \text{ for } p \leq q < \infty$$

Indeed by the definition of $L_{n/p}^{p}$ we know $f = G_{n/p} * g$ for $g \in L^{p}$ with $||g||_{p} \leq 1$,

841

Indiana University Mathematics Journal, Vol. 21, No. 9 (1972).