On the Swirling Flow Problem

PHILIP HARTMAN

Communicated by DAVID GILBARG

1. The object of this note is to give a simple proof of the following:

Theorem (*). There exists a solution of the singular (autonomous) boundary value problem

$$(1.1) f''' + ff'' + \beta(g^2 - \omega^2 - f'^2) = 0,$$

$$(1.2) g'' + fg' - 2bf'g = 0,$$

(1.3)
$$f(0) = f_0, f'(0) = f'_0 \text{ and } g(0) = g_0,$$

$$(1.4) f'(\infty) = 0 and g(\infty) = \omega,$$

under the assumption

(1.5)
$$0 < \beta < 2b \text{ and } g_0 > 0, \quad \omega > 0.$$

Existence has been proved by McLeod [7] in the case $b = \beta = 1/2$ and $f'_0 = 0$, which corresponds to the existence of a solution of the Navier-Stokes equations for an axially symmetric flow above an infinite rotating disc (where, if $\nu = 1$ and (r, θ, t) are cylindrical coordinates, then the velocity in these coordinates is (rf'(t), rg(t), -2f(t)); cf. Serrin [10], pp. 29-30). For references and other existence and non-existence theorems related to (1.1)-(1.4), see Watson [11], McLeod [6], and Hartman [3].

It is not clear that McLeod's proof [7] is valid under the conditions (1.5). The main point of this note, however, is the brevity and simplicity of the proof compared to that of McLeod [7] (or Watson [11] or Hartman [3]). It will not involve a priori asymptotic formulas for the solutions (cf. [5], [3]), nor a separation of cases $f_0 \leq 0$ and $f_0 > 0$, nor singular integral equations. Some of the basic a priori estimates below, however, are obtained by methods suggested by McLeod [7]. We first prove existence for a non-singular boundary value problem on a finite interval $0 \leq t \leq T$, namely, (1.1)–(1.3) and assigned f'(T), g(T); take a limit as $T \to \infty$; and finally, verify the conditions (1.4) at $t = \infty$. The treatment below of the boundary value problem on [0, T] follows the methods of [1]; cf. [2], pp. 428–434. Other applications of these methods to