On the Invertibility of a Class of Toeplitz Operators on the Quarter-Plane

R. G. DOUGLAS
Communicated by Joel D. Pincus

Let $L^{2}\left(\mathbf{T}^{n}\right)$ denote the usual Hilbert space of complex square integrable functions on the n-dimensional torus \mathbf{T}^{n} with respect to normalized Lebesgue measure. The Fourier transform of a function in $L^{2}\left(\mathbf{T}^{n}\right)$ is a complex function on the additive group \mathbf{Z}^{n} of ordered n-tuples of integers. The closed subspace $H^{2}\left(\mathbf{T}^{n}\right)$ of functions in $L^{2}\left(\mathbf{T}^{n}\right)$ whose Fourier transform is supported on the positive semigroup $\mathbf{Z}_{+}^{n}=\mathbf{Z}_{+} \times \cdots \times \mathbf{Z}_{+}$in \mathbf{Z}^{n} is of considerable importance in several areas of analysis. If P is the orthogonal projection of $L^{2}\left(\mathrm{~T}^{n}\right)$ onto $H^{2}\left(\mathbf{T}^{n}\right)$ and φ is a continuous function on \mathbf{T}^{n}, then the Toeplitz operator W_{φ} on $H^{2}\left(\mathbf{T}^{n}\right)$ with symbol φ is defined by $W_{\varphi} f=P(\varphi f)$ for f in $H^{2}\left(\mathbf{T}^{n}\right)$.

The problem of understanding the nature of these operators and the operators in the closed algebra which they generate has stimulated much interest lately. In the case $n=1$ the results are by now well-known (cf. [2]): the operator W_{φ} is a Fredholm operator if and only if φ doesn't vanish and has index equal to minus the winding number of the oriented curve determined by φ. Using results proved for convolution operators in smooth cones, Simonenko showed in [9] that W_{φ} is a Fredholm operator for φ on \mathbf{T}^{2} if and only if φ doesn't vanish and is homotopic to a constant. (The assumption that the cone needs to be smooth was overlooked in [3], and hence the reasoning which implied that all Wiener-Hopf operators with non-vanishing symbol are invertible is invalid for $n>2$.) Malyšev showed in [5] that for functions of the form

$$
\varphi\left(z_{1}, z_{2}\right)=\sum_{i, k=-1}^{1} \hat{\varphi}(j, k) z_{1}^{i} 1_{2}^{k},
$$

the operator W_{φ} on $H^{2}\left(\mathrm{~T}^{2}\right)$ is invertible if φ doesn't vanish and is homotopic to a constant and he gave a more or less explicit representation for the inverse (Malyšev considers the corresponding operator on the ℓ^{1} space of functions in $H^{2}\left(\mathbf{T}^{2}\right)$ with an absolutely convergent Fourier series). A similar result was obtained by Osher in [7] for functions of the form $\alpha\left(z_{1}\right) \beta\left(z_{2}\right)+\gamma\left(z_{1}\right)$, where α, β, and γ are continuous.

