On Convexity and Compactness in F-Spaces with Bases

JOEL H. SHAPIRO

Communicated by Victor Klee

Introduction. This paper deals mainly with non-locally convex F-spaces, and contains variations on the following theme: every closed, bounded, convex subset of ℓ^p (0 < p < 1) is compact. More generally (Theorem 1), if E is an F-space with an absolute basis (e_n) , and the set $\{te_n: t > 0\}$ is unbounded in the E-metric for each n, then the following three statements are equivalent:

- (a) If (f_k) is a block basis for (e_n) which is bounded away from zero, then the series $\sum t_n e_n$ diverges for some sequence (t_n) in ℓ^1 .
 - (b) No infinite dimensional subspace of E is locally convex.
 - (c) Every closed, metrically bounded, convex subset of E is compact.

A related result (Theorem 2) which depends only on the topology of E, and not on the particular metric that produces it, is the following: if E has a boundedly complete basis satisfying condition (a) above, then every closed, (topologically) bounded, convex subset of E is compact.

We apply these results to some sequence spaces related to the ℓ^p spaces $(0 . Specifically we consider the spaces <math>\bigcap_{p>p_0} \ell^p$ $(0 \le p_0 < 1)$; the spaces ℓ^p of complex sequences f with

$$(0.1) ||f|| = \sum \varphi(|f(n)|) < \infty,$$

where φ is a continuous, unbounded, subadditive, increasing function on $[0, \infty)$, with $\varphi(t) = 0$ iff t = 0; and the spaces $\ell(p_n)$ of complex sequences f with

$$(0.2) ||f|| = \sum |f(n)|^{p_n} < \infty,$$

where (p_n) is a sequence of numbers with $0 < p_n \le 1$. Using Theorem 1 we show that whenever the function $t^{-p}\varphi(t)$ is monotone decreasing on $(0, \infty)$ for some $0 , then every closed, norm bounded, convex subset of <math>\ell^{\varphi}$ is compact; and that the same conclusion holds for $\ell(p_n)$ iff $\lim \sup p_n < 1$. We show that if $\lim p_n = 1$, then every infinite dimensional subspace of $\ell(p_n)$ has a further one isomorphic to a dense subspace of ℓ^1 . This is of interest because

1073

Indiana University Mathematics Journal, Vol. 21, No. 12 (1972).