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Introduction. In this work we will discuss the theory of thin sets relative to
non-linear potentials of the form u, = k * (k * u)"/“~". Here k is a kernel on R”,
which, among other things, is radial and non-increasing in |z|, u is a positive
Radon measure and 1 < p < «. Such potentials play a prominent role in the
capacity theory of linear potentials k& * f, where f is a function in the Lebesgue
class &, ; see [7] and [8]. The continuity properties of the two kinds of potentials
are closely tied, so that the theory of thin sets for the non-linear potential
gives important information concerning the continuity of the linear potential.
For a discussion of this see [6].

We distinguish two classes of non-linear potentials, ®, , and §; , . The first
class contains more or less all potentials of interest, while the second is the
subclass consisting of bounded potentials. We consider thinness relative to
these two classes. If E C R" and z, ¢ E we say that E is @, ,-thin at z, , if 7, ¢ E
or there exists u = u, ¢ ®, , such that

u(x,) < lim inf u(z).
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¥, ,~-thinness is defined in the same way except that u ¢ F, , .

Our principal concern is the Wiener Criterion for thinness. Here we impose
the restriction that in the neighborhood of 0, k(x) be comparable to a kernel
|z]*™, 0 < a < n. Further, we need consider only the case ap < n, since, in
the contrary case, the potentials are continuous functions. Pointwise upper
and lower bounds for the non-linear potential, discussed at length in Section 3,
play a crucial role. We will outline some of these results in rough form. Let
(To , 1) = [(12-ze1<r du(x). In all cases, 1 < p < n/a, we get the lower bound,
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