Structure of Certain Nonnormal Operators II

HORST BEHNCKE

Communicated by the Editors

In this note we continue the study of certain nonnormal operators begun in [1]. As in [1] we use C^* -algebra methods to obtain information about single operators. The results of [1] are extended and in particular we give a decomposition and structure theory for nearly normal, nearly binormal and nearly quasinormal operators. Finally we present a new result about postliminal operators. Throughout H denotes a complex not necessarily separable Hilbert space. Let A be a bounded linear operator on H. We obtain information about A by studying the C^* -algebra $C^*(A)$, which is generated by A and 1. Our major tool in this investigation is the algebra $\Re(H)$ of all compact linear operators on H. If S is a subset of $\mathfrak{B}(H)$, the algebra of all bounded linear operators on H, the commutant of S will be denoted by S'. For A, B $\varepsilon \mathfrak{B}(H)$ we use $A \leftrightarrow B$ and A = B for AB - BA = 0 and $AB - BA \in \Re(H)$. The real (imaginary) part of $A \in \mathfrak{B}(H)$ is denoted by Re A (Im A). Among the properties of operators are some which are invariant under C^* -homomorphisms. Those we call C^* properties. Examples are: A is normal, hyponormal or a contraction. If an operator A has a C^* -property modulo $\Re(H)$, we say it has nearly this property. Thus we speak of nearly normal or nearly quasinormal operators. Our basic reference for the theory of C^* -algebras will be the book by J. Dixmier [5].

The following lemma generalizes a result of Kaplansky [5, 4.7.20] and Lemma 4 of [1]. It is the key for the remainder.

Lemma 1. Let \mathfrak{A} be a C^* -algebra of operators on H with $1 \in \mathfrak{A}$. Then there exists an index set J and a family of orthogonal projections $\{P_0, P_\alpha\}_{\alpha \in J}$ with

- (1) $P_0 + \sum P_{\alpha} = 1$, P_0 , $P_{\alpha} \in \mathfrak{A}'' \cap \mathfrak{A}'$ for all $\alpha \in J$,
- (2) $P_0 \mathfrak{A} \cap \mathfrak{R}(H) = (0)$ and
- (3) $P_{\alpha}H = K_{\alpha} \otimes \mathfrak{C}^{n_{\alpha}}, P_{\alpha}\mathfrak{A} \cap \mathfrak{R}(H) = \mathfrak{R}(K_{\alpha}) \otimes 1 \text{ and } n_{\alpha} < \infty.$

The P_{α} , with $\alpha \neq 0$, are minimal central projections of \mathfrak{A}'' and each algebra $P_{\alpha}\mathfrak{A}''$, with $\alpha \neq 0$, is a factor of type I with finite multiplicity n_{α} . \mathfrak{A}'' is of type I if $P_0\mathfrak{A}$ is of type I. If \mathfrak{A} is separable J is countable and $(1 - P_0)H$ is separable.