The Converse to the Fixed Point Theorem of P. A. Smith: II

LOWELL JONES

Communicated by Andrew Wallace

An action of the cyclic multiplicative group \mathbf{Z}_n on the manifold M is semi-free if either r(t, x) = x, $\forall t \in \mathbf{Z}_n$, or r(t, x) = x only if t = 1, holds for each point x in M. Two semi-free actions $r_i : \mathbf{Z}_n \times M \to M$ (i = 0, 1) are equivalent if there is a semi-free action

$$r: \mathbb{Z}_n \times (M \times [0, 1], M \times \{0 \cup 1\}) \to (M \times [0, 1], M \times \{0 \cup 1\})$$

so that $r|_{M \times i}$ is equal to r_i $(i = 0, 1)$.

In this paper we shall always assume that M, semi-free group actions on M, and equivalences of group actions on M are all differentiable. Under these restrictions the fixed point set, F_r , of any semi-free action $r: \mathbb{Z}_n \times M \to M$ is a differentiable submanifold of M. Furthermore the action of \mathbb{Z}_n is linear in some neighborhood of F_r in M in the following sense:

- (1) There is a \mathbb{Z}_n -equivariant, linear bundle, τ , normal to F_{τ} in M, such that the \mathbb{Z}_n -action restricts on each fiber of τ to a linear automorphism.
- (2) If n=2, this restriction to each fiber of τ is just the antipodal map (multiplication by -1).
- (3) If $n \neq 2$, choose (for the duration of this paper) a minimal set of integers q_1 , q_2 , \cdots , q_l prime to n, so that every primitive n^{th} root of unity is either some $e^{(2\pi i/n)q_l}$ or a complex conjugate thereof. Then τ splits into a Whitney sum $\bigoplus_{j=1}^{l} \tau_j$ of complex bundles, so that each factor τ_i is invariant under the action of \mathbb{Z}_n , and this restriction to each fiber of τ_i is just complex multiplication by $e^{(2\pi i/n)q_l}$. Furthermore the splitting $\tau \sim \bigoplus_{j=1}^{l} \tau_j$ is uniquely determined by the action $r: \mathbb{Z}_n \times M \sim M$. Let $\{d_i: j=1,2,\cdots,l\}$ be the complex dimensions of the fibers of $\{\tau_i: j=1,2,\cdots,l\}$; these numbers are equivalence (of \mathbb{Z}_n -actions) invariants. These results can be found on pages 104–107 of [3].

Let $C_m(d_1, d_2, \dots, d_l)$ denote the set of equivalence classes of semi-free orientation preserving (differentiable) \mathbf{Z}_n -actions on S^m , where if $n \neq 2$, then d_i , $j = 1, \dots, l$, are as in (3) above; and if n = 2, then l = 1, and d_1 equals the real dimension of the normal bundle τ to F_r . $C_m(d_1, \dots, d_l)$ has an abelian