Tangent Cones to Real Analytic Varieties

KEITH KENDIG

Communicated by Andrew Wallace

Introduction. The usual notion of "tangent space" at a simple point of a real or complex analytic variety has been extended to "tangent cone" at an arbitrary point of the variety, simple or not (see, e.g., [7, §§3-7], or [8, §§8-10]); in the complex case, Whitney in [7] and [8] has worked out a number of important properties of these tangent cones. We show in this paper that although these properties may not hold at certain points of a real analytic variety (Examples 1.6a-c), they must hold at each point off a real analytic subvariety of codimension ≥2 in the variety (Theorem 1.8).

1. Definitions; examples.

Definition 1.1. Let H be an open set in complex n-space, \mathbb{C}^n . A subset W of H is a complex-analytic variety in H if W is closed, and if at any point $p \in W$, there is a \mathbb{C}^n -open neighborhood U_p such that $W \cap U_p$ is the set of common zeros of a collection of functions complex-analytic in U_p . A set V of real n-space \mathbb{R}^n is a real \mathbb{C} -analytic variety in \mathbb{R}^n if it is the real part of some variety W complex-analytic in some \mathbb{C}^n -open neighborhood of \mathbb{R}^n .

We shall refer to these simply as "real-analytic varieties", or "real varieties".

Convention. Throughout this paper, the letter "V" will generally refer to the real case, the letter "W" to the complex case; the letters "X" and "Y" will be used when consideration extends to both cases.

Notation 1.2. We denote the germ at p of a real or complex variety X by \tilde{X}_{p} .

For basic properties of real C-analytic varieties and germs, see [11] or [4].

Definition 1.3. Let \widetilde{X}_{p} be a real or complex analytic germ. The geometric tangent cone to \widetilde{X}_{p} , denoted $T_{s}(\widetilde{X}_{p})$, is the set of all vectors v satisfying the following condition:

There is a sequence of points $\{p_i\}$, $p_i \in X \setminus \{p\}$, $p_i \to p$, and a sequence of real numbers $\{a_i\}$ such that $v = \lim_{i \to \infty} a_i(p_i - p)$.