A PDE in R³ with Strange Behavior

C. DENSON HILL

Communicated by Paul R. Garabedian

Analytic functions of one (or several) complex variables have certain well-known properties; e.g., Liouville's theorem, unique continuation, the maximum modulus principle. It is a natural question to ask what becomes of these properties if, instead of analytic functions, one considers the class of functions annihilated by one (or several) smooth complex vector fields in \mathbb{R}^n . The purpose of this note is to discuss a very simple example of a smooth complex vector field in \mathbb{R}^3 ; it illustrates how the behavior of the coefficients in the equation can have a weird influence on the properties mentioned above.

The coordinates in \mathbb{R}^3 will be denoted by (t, y_1, y_2) . Let $a(t) \in C^{\infty}(\mathbb{R}^1)$ be a function $a: \mathbb{R}^1 \to \mathbb{R}^1$. The operator we consider is

$$L = \frac{\partial}{\partial t} + i \left(\frac{\partial}{\partial u_1} + a(t) \frac{\partial}{\partial u_2} \right), \qquad i = (-1)^{1/2}.$$

By a solution of Lu = 0 in \mathbb{R}^3 , we shall mean a sufficiently smooth complex-valued solution, say $u \in C^{\infty}(\mathbb{R}^3)$.

We use the following terminology: L has the Liouville property on \mathbb{R}^3 iff every bounded solution of Lu=0 in \mathbb{R}^3 is constant. L has the unique continuation property on \mathbb{R}^3 iff any solution of Lu=0 in \mathbb{R}^3 , which vanishes on some nonvoid open set, must be identically zero. L satisfies the maximum modulus principle on \mathbb{R}^3 iff any solution of Lu=0 in \mathbb{R}^3 , whose modulus has, at some point, a weak maximum relative to \mathbb{R}^3 , must be constant.

In what follows, let $\psi(t) = \int_0^t a(\tau) d\tau$ and $\Gamma = \text{graph } \psi$. The convex hull of a set A in \mathbb{R}^2 will be denoted by ch A.

Theorem. (a) L has the Liouville property on $\mathbb{R}^3 \Leftrightarrow ch \Gamma = \mathbb{R}^2$.

- (b) L has the unique continuation property on $\mathbb{R}^3 \Leftrightarrow a(t)$ is not identically constant.
 - (c) L satisfies the maximum modulus principle on $\mathbb{R}^3 \Leftrightarrow \Gamma \subset \text{interior ch } \Gamma$.

Remarks. From (a) we see that the Liouville property depends only on the behavior of a(t) at $t = \pm \infty$; e.g., a(t) can be arbitrary in any bounded interval,