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1. It is well known that the construction of barriers is an essential step in
the proof of the existence and regularity of the solutions to the Dirichlet prob-
lem for nonlinear, non-uniformly elliptic equations.

In particular, Jenkins and Serrin ([3]) have considered the equation of non-
parametric minima] surfaces in an open set @ in R", and using the barrier tech-
nique have proved that there exists a unique solution to the minimal surface
equation in Q, which takes prescribed values ¢(z) on the boundary of ©, provided
90 is a C*hypersurface with non-negative mean curvature, and the function
¢ is twice-continuously differentiable. This solution is twice-continuously
differentiable in all of Q. Also, if Q@ and the boundary data are more regular,
say C*** with k = 2, then the solution is C*** in all of . On the other hand,
by means of an approximation technique (see [4]), one can show the existence
and the uniqueness of a continuous non-parametric minimal surface, provided
the function ¢(x) is continuous and the condition on the mean curvature of o2
is satisfied.

The a priori gradient estimate of Bombieri, De Giorgi and M. Miranda
([1]) implies that this solution is analytic in @, and hence is a solution to the
Dirichlet problem for the equation of minimal surfaces with continuous bound-
ary data.

The aim of this paper is to study the global regularity (¢.e., regularity up to
the boundary) of minimal surfaces in the intermediate case in which the function
¢(x) is more than merely continuous, but is not twice differentiable. We get
the following results:

a) If ¢ belongs to C'*%, 0 < a = 1, then the solution u(x) is Lipschitz-

continuous up to the boundary.

b) If ¢ is Lipschitz-continuous, then u(z) is Holder-continuous in &, with

some positive exponent o.

The statement (b) can be improved if we make an additional assumption

on 9. In fact, we have:
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