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1. Introduction. In this paper we pursue the study of the two sided ideal
structure of the ring £(5¢) of all bounded linear operators on a separable infinite
dimensional complex Hilbert space 3¢, employing the same approach as in [1].
The fundamental tool of this approach (used implicitly throughout the present
paper) is a theorem of Calkin [2, §1] which states the existence of a one to one
lattice preserving correspondence between the two sided ideals of £(3¢) and
certain subsets of the set of all bounded sequences of non-negative real numbers
called ideal sets.

Definition. A set J of bounded sequences of non-negative numbers is
called an ideal set if it satisfies the following conditions:

i) if {\,} e J, then {\,m} & J for every permutation = of the set Z* of
positive integers;
ii) if {\,}JeJ and 0 < p, = \,, for every ne Z*, then {u,} e J;
iil) if {u,} e J and {\,} e J, then {u, + N} e J.

We recall that, if g is a proper two sided ideal of £(3¢), then the ideal set J,
which corresponds to § under the above mentioned one to one mapping is the
set of all sequences of eigenvalues (counted according to multiplicity) of all
positive operators of .

The simplest non trivial examples of ideal sets are the set C of all sequences
of non-negative numbers tending to zero (corresponding to the ideal of all
compact operators on 3C) and the subset F of C consisting of all sequences such
that only finitely many terms are different from zero (corresponding to the
ideal of all finite rank operators on 3¢). C' and F turn out to be the maximal
and the minimal non trivial ideal sets, respectively [2]. From now on, an ideal
set J will be called proper if the inclusions F C J C C are proper. The classical
examples of proper ideal sets are the ideal sets C, of the p-Schatten ideals
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