Some Results on Power Bounded Operators

M. RADJABALIPOUR

Communicated by the Editors

It is well known that an operator T on a Hilbert space which is power bounded (i.e., $||T^n|| < k$, for $n = 0, 1, 2, \cdots$) need not even be similar to a contraction [1], [2]. Here we show that, given some supplementary hypotheses, T is necessarily similar to a unitary operator.

The theorems were found independently of the recent papers [4], [5]. The direct proofs will appear in my thesis. Here I give shorter proofs by relying on results from [4], [5].

Throughout the paper we will be considering bounded operators T on a Hilbert space H endowed with the inner product norm $||\cdot||$. The usual notations $R_s(T)$, N(T), and R(T) will be used for $(z-T)^{-1}$, the null space of T, and the range of T respectively.

Let M_i , $i=1, 2, \cdots$, be a finite or an infinite sequence of closed subspaces of H. We say H is the direct sum of M_i , denoted by $\sum_i \bigoplus M_i$, if $H = \bigvee_i M_i$ and to each element x of H there corresponds a unique sequence (x_i) such that $x = \sum_i x_i$, $x_i \in M_i$, $i = 1, 2, \cdots$. (The M_i 's need not be orthogonal.)

Theorem 1. If T is a power bounded operator on a Hilbert space H, and $H = \bigvee_{|z|=1} N(z-T)$, then T is similar to a unitary operator.

Note. Following terminology in [4], an operator T is called C-full in case $H = \bigvee_{|z|=1} N(z-T)$.

Proof of Theorem 1. Define a new norm $|\cdot|$ on H by $|x| = \sup_{n\geq 0} ||T^nx||$, $x \in H$. It is easy to see that the two norms $||\cdot||$ and $|\cdot|$ are equivalent and $(H, |\cdot|)$ is a reflexive Banach space. Moreover $|T| \leq 1$, which implies that T, as an operator on $(H, |\cdot|)$, is a C-full contraction.

It follows from [4, Th. 2] that T is a unitary operator, whence $|T^n| = 1$ for $n = 0, \pm 1, \pm 2, \pm 3, \cdots$.

But now the equivalence of the two norms implies that $||T^n|| < k$, where k is a positive constant and $n = 0, \pm 1, \pm 2, \cdots$. Thus by the criterion of Sz.-Nagy [7], T is similar to a unitary operator. The proof of the theorem is complete.