The Initial-Boundary Value Problem for the Navier-Stokes Equations with Data in L^p

JEFF E. LEWIS

Communicated by DAVID GILBARG

Introduction. Let the $L^{P,Q}$ norm of a function f(t,x) of t, time, and a spatial variable x be given by

$$||f||_{P,Q} = \left(\int_0^T \left(\int_{\text{Space}} |f(t,x)|^P dx\right)^{Q/P} dt\right)^{1/Q}.$$

A condition of regularity for solutions of nonstationary Navier–Stokes equations [4] is to require that the solution $u=(u^1,\cdots,u^n)$ belongs to the class $L^{P,Q}$, with n/P+2/Q=1 and $n< P<\infty$. For the nonlinear initial-boundary value problem in a half-space, it will be shown that requiring the boundary data a to be in an $L^{p,q}$ space, with (n-1)/p+2/q=1 and $n-1< p<\infty$, will yield a solution $u \in L^{P,Q}$. The analytic tool which gives relations of the form (space dimension)/p+2/q=1 is the Sobolev Embedding Theorem.

Specifically, the following problem is considered: in $[0, T) \times \mathbb{R}^n_+$, one seeks a vector valued function $u(t, x, y) = (u^1, \dots, u^n)$ and a scalar valued pressure function P(t, x, y) which satisfy

(0.1)
$$u_{t} - \triangle u = -(u \cdot \nabla)u - \nabla P \quad \text{in} \quad (0, T) \times \mathbb{R}^{n}_{+},$$

$$\nabla \cdot u = 0 \quad \text{in} \quad (0, T) \times \mathbb{R}^{n}_{+},$$

$$u(0, x, y) = g(x, y) \quad \text{in} \quad \mathbb{R}^{n}_{+}, \quad \text{with} \quad \nabla \cdot g = 0,$$

$$u(t, x, 0) = a(t, x) \quad \text{in} \quad (0, T) \times \mathbb{R}^{n-1}.$$

Here \triangle is the Laplace operator $\sum_{i=1}^{n-1} \partial^2/\partial x_i^2 + \partial^2/\partial y^2$ and the symbol ∇ is the gradient in the space variables (x, y) only; $\nabla \cdot u$ is the divergence $\sum_{i=1}^{n-1} \partial u^i/\partial x_i + \partial u^n/\partial y$. The Euclidean real space of dimension k is denoted by \mathbb{R}^k ; let \mathbb{R}^k_+ be the open half-space of points $\{(x, y) : x \in \mathbb{R}^{k-1}, y > 0\}$.

We suppose that the initial data g(x, y) ε $L^r(\mathbb{R}^n_+)$, $n < r < \infty$, and that $\nabla \cdot g = 0$ in the sense of distributions; no condition of integrability is assumed