Quasiconformal Mappings Near the Boundary

DIETER GAIER

Communicated by the Editors

1. Introduction and result. Let G be a finite, simply connected region with $0 \in G$ and $1 \in \partial G$, and assume that $z_0 \in G$ can be connected to z = 1 by a Jordan arc γ of length L lying in G except for its endpoint z = 1. Let f be a K-quasiconformal mapping of G onto the disc $D_w = \{w : |w| < 1\}$ with f(0) = 0 and $f(z) \to 1$ as $z \to 1$ on γ .

Theorem. Under these assumptions we have

$$|f(z_0) - 1| < 4^{2-1/K} \cdot L^{1/(2K)}.$$

If in addition $G \subset H$, where H is a half plane with $1 \in \partial H$, we have

$$|f(z_0) - 1| < 4^{2-1/K} \cdot L^{1/K}.$$

These results generalize a theorem of a previous paper [1] in two directions: If z_0 is visible from z = 1, i.e., γ can be taken as the segment $(z_0, 1)$, and if f is a conformal mapping (K = 1), our theorem reduces to (1.1) and (1.2) of [1]. We also see that 4 cannot be replaced by a constant <2. The estimate (1.1) (for K = 1) answers a question raised by Helmut Wielandt.

2. An estimate of harmonic measure. Assume that the capacity of γ is $c < \frac{1}{4}$. We shall estimate the harmonic measure of γ with respect to $G \setminus \gamma$ at z = 0:

(2.1)
$$m(0, \gamma, G\backslash \gamma) \leq \frac{2}{\pi} \arcsin (2c^{1/2}).$$

Since the capacity c and the length L of γ satisfy $L \ge 4c$ (see Pommerenke [3], p. 66; I owe this reference to Dr. Hübner), this implies

(2.2)
$$m(0, \gamma, G \setminus \gamma) \leq \frac{2}{\pi} \arcsin (L)^{1/2}$$

813

Indiana University Mathematics Journal, @ Vol. 22, No. 9 (1973)