Vector Fields on Quotient Manifolds of Spheres

J. C. BECKER

Communicated by A. H. WALLACE

1. Introduction. Let M denote a smooth (n-1)-dimensional manifold and let $\sigma(M)$ denote the maximum number of independent vector fields on M. In this paper we will study the function $\sigma(M)$ for manifolds which are finitely covered by a homotopy sphere. In this case M has the form Σ^{n-1}/G where G is a finite group acting freely and differentiably on a homotopy sphere Σ^{n-1} . If Γ is a Sylow 2-subgroup of G it is a well known fact that Γ is either cyclic or a generalized quaternion group [10]. Let R, C, H denote respectively the real, complex, or quaternionic numbers and define the type of G to be R if Γ is Z_2 or the trivial group, C if Γ is cyclic of order at least 4, and H if Γ is a generalized quaternion group. The Radon-Hurwitz number $\rho(n, F)$ is defined to be the largest integer k such that R^n is a $C_{k-1} \otimes F$ -module, where C_{k-1} denotes the Clifford algebra on k-1 generators. Our main result is the following.

Theorem 1.1. Suppose $n \neq 8$, 16. If G has type F, then $\sigma(M) = \rho(n, F) - 1$.

This extends the main result of [7] which dealt with the case where G acts linearly on the sphere S^{n-1} . In the case where the order of G is odd (1.1) has been obtained by Yoshida [27]. Sierve [23] has given an example to show that the result is false when n = 8. It seems likely that it is true when n = 16, and we will show that this is the case except when G has type C and the action of G on Σ^{15} is non-linear.

2. Invariance of $\sigma(M)$. If ξ is an n-plane bundle over a finite dimensional complex B let $\sigma(\xi)$ denote the maximum number of independent cross sections to ξ and let $\bar{\sigma}(\xi)$ denote the maximum of $\sigma(\xi')$ where ξ' is an n-plane bundle stably isomorphic to ξ . If M is a smooth n-manifold with tangent bundle $\tau(M)$ we abbreviate $\sigma(\tau(M))$ and $\bar{\sigma}(\tau(M))$ to $\sigma(M)$ and $\bar{\sigma}(M)$ respectively. We assume throughout that M is closed and connected.

The following result is due to W. Sutherland [24].