Traces of Potentials. II.

DAVID R. ADAMS

Communicated by the Editors

We continue the discussion begun in [1]. Specifically, we are interested in the non-linear potentials

$$g_{\alpha} * (g_{\alpha} * \mu)^{1/(p-1)}(x) \equiv U_{\alpha,p}^{\mu}(x), \quad 1$$

where μ is a (non-negative) Borel measure and g_{α} is the Bessel kernel of order $\alpha > 0$, i.e., $g_{\alpha}(x)$, $x \in \mathbb{R}^n$, is the Fourier transform of $(1 + |\xi|^2)^{-\alpha/2}$, $\xi \in \mathbb{R}^n$. More explicitly,

$$g_{\alpha}(x) = c_{\alpha} \int_{0}^{\infty} t^{(\alpha-n)/2} \exp \left[-(|x|^{2}/4t) - t\right] \frac{dt}{t}$$

where the constant c_{α} normalizes so that $||g_{\alpha}||_1 = 1$. The potentials $U_{\alpha,p}^{\mu}$ arise in the study of a non-linear analogue of the classical Newtonain capacity. See [2], [7] and [8]. The classical theory corresponds to the case p = 2, $\alpha = 1$.

As pointed out in [1], the regularity of $U^{\mu}_{\alpha,p}$ sheds light on the "trace" or restriction of potentials $g_{\alpha} * f(x)$ to subsets of \mathbb{R}^n of *n*-dimensional Lebesgue measure zero. Here f is an arbitrary function of the usual Lebesgue class L_p (* denotes convolution over \mathbb{R}^n). To measure the trace of $g_{\alpha} * f$ on a given compact exceptional set K, we look for measures $\mu \neq 0$, concentrated on K, such that the mapping $g_{\alpha}: L_p \to L_q(\mu)$ is continuous, *i.e.*, there is a constant A independent of f in L_p such that

(1)
$$\left(\int |g_{\alpha} * f|^{\alpha} d\mu \right)^{1/\alpha} \leq A ||f||_{p}, \quad 1 < p, q < \infty.$$

In analogy to the classical restriction theorems of functions in the Sobolev classes $W^{l,p}$ to hypersurfaces of dimension d contained in \mathbb{R}^n , we consider compact sets $K \subset \mathbb{R}^n$ with positive Hausdorff h-measure, $H_h(K) > 0$. $H_h(K) = \lim_{\epsilon \to 0} \inf \Sigma_{r} h(r_r)$, the infimum being over all countable coverings of K by balls of radius $r_r \leq \epsilon$, $\epsilon > 0$. Here h = h(r) is a non-negative, non-decreasing, continuous function of $r \geq 0$, h(0) = 0. By a theorem of Frostman-Carleson [4], the existence of $\mu \not\equiv 0$, concentrated on K, satisfying the growth condition