The Asymptotic Behavior of the First Real Eigenvalue of a Second Order Elliptic Operator With a Small Parameter in the Highest Derivatives

AVNER FRIEDMAN

Communicated by MARK KAC

Introduction. Let L_{ϵ} be a second order elliptic operator with the highest coefficients multiplied by a parameter ϵ^2 (see (1.1)). Consider the first real eigenvalue λ_{ϵ} of the Dirichlet problem corresponding to $-L_{\epsilon}$ in a bounded domain Ω . Assume that there are compact subsets K_1 , \cdots , K_l of Ω such that the following holds: any characteristic curve of the first order operator L_0 that starts at a point of Ω never leaves Ω and its ω -limit set is one of the sets K_{ϵ} . With each K_{ϵ} one associates a number V_{ϵ} which, intuitively, measures the amount of energy the limiting diffusion process ($\epsilon \to 0$) will require in order to cross from K_{ϵ} to the boundary of Ω . The main purpose of this paper is to establish the following estimates:

(0.1)
$$\overline{\lim_{\epsilon \to 0}} (-2\epsilon^2 \log \lambda_{\epsilon}) \leq \max (V_1, \dots, V_l), \\ \underline{\lim_{\epsilon \to 0}} (-2\epsilon^2 \log \lambda_{\epsilon}) \geq \min (V_1, \dots, V_l).$$

For l=1 this result was recently announced by Ventcel [6]; a very brief outline of a proof is given in [6]. Our method of proof is different and appears to be much simpler. For l>1, Ventcel [7] has announced a result which is inconsistent with (0.1); it is therefore fallacious.

We finally remark that the tools employed in this work (as well as in [6]) are probabilistic. Essential use will be made of probabilistic inequalities due to Ventcel and Freidlin [8].

1. The main results. Consider an elliptic operator

1005

Indiana University Mathematics Journal, ©, Vol. 22, No. 10 (1973)