Two Limit Theorems for Random Differential Equations

R. COGBURN & R. HERSH

Communicated by Mark Kac

1. Introduction. Let (Ω, α, P) be a probability space and, for $\epsilon > 0$, t > 0, let $V(\epsilon, t, \omega)$ be a linear operator (in general, unbounded) on a Banach space F. We assume that

(1)
$$\frac{dy^{\epsilon}(t)}{dt} = \epsilon V(\epsilon, t, \omega) y, \text{ for } t > s, \quad y^{\epsilon}(s) = f,$$

and under suitable regularity conditions, including a mixing condition, we obtain asymptotic formulas for y as $\epsilon \to 0$, and $t \to \infty$ in an appropriate scaling. Applications include wave propagation in random media, nonlinear stochastic ordinary differential equations, and the diffusion approximation in linear transport theory.

In equation (1) let

(2)
$$V(\epsilon, t, \omega) = V_1(t, \omega) + \epsilon V_2(t, \omega) + \epsilon^2 V_3(\epsilon, t, \omega)$$

where $||V_i f|| \leq k(f)$ for j = 1, 2, 3, and f in a subspace $\mathfrak D$ which is dense in F and is in the domain of $V(\epsilon_1, t_1, \omega_1) \cdot V(\epsilon_2, t_2, \omega_2) \cdot V(\epsilon_3, t_3, \omega_3)$ for all $\epsilon > 0$, t > 0, $\omega \in \Omega$. As usual, we suppress the argument ω when convenient. Here and below k always denotes a constant independent of ϵ and t.

For $f \in \mathfrak{D}$, let

(3)
$$\bar{V}_1(t_0, l)f = \frac{1}{l} \int_{t_0}^{t_0+l} E(V_1(t)) dt f,$$

(4)
$$\bar{V}_2(t_0, l)f = \frac{1}{l} \int_{t_0}^{t_0+l} E(V_2(t)) dt f,$$

(5)
$$\bar{V}_{11}(t_0, l)f = \frac{1}{l} \int_{t_0}^{t_0+l} \int_{t_0}^{t_0+l} E(V_1(s) V_1(r)) dr ds f.$$

1067

Indiana University Mathematics Journal, © Vol. 22, No. 11 (1973)