Some Results on Non-quasitriangular Operators

CONSTANTIN APOSTOL, CIPRIAN FOIAS & LÁSZLÓ ZSIDÓ

Communicated by the Editors

Let \mathfrak{H} be a separable-definite dimensional, complex Hilbert space and let $\mathfrak{L}(\mathfrak{H})$ denote the algebra of all bounded, linear operators acting in \mathfrak{H} . Let $\mathfrak{L}(\mathfrak{H})$ denote the directed set of all finite-dimensional subspaces (= closed linear manifolds) of \mathfrak{H} . If \mathfrak{A} is a subspace in \mathfrak{H} , then \mathfrak{A}^{\perp} is the orthogonal projection of \mathfrak{H} onto \mathfrak{A} . For any $T \in \mathfrak{L}(\mathfrak{H})$ set

$$\begin{split} q(T) &= \lim_{\Re \, \epsilon \, \mathbb{S}(\mathfrak{P})} \, ||P_{\mathfrak{A}} \, {}_{1}TP_{\mathfrak{A}}|| \, = \, \sup_{\Re \, \epsilon \, \mathbb{S}(\mathfrak{P})} \, (\inf_{\substack{\mathfrak{A} \, \subset \, \mathfrak{B} \\ \mathfrak{B} \, \epsilon \, \mathbb{S}(\mathfrak{P})}} \, ||P_{\mathfrak{B}} \, {}_{1}TP_{\mathfrak{B}}||), \\ Q(T) &= \, \overline{\lim}_{\substack{\mathfrak{A} \, \epsilon \, \mathbb{S}(\mathfrak{P}) \\ \mathfrak{A} \, \epsilon \, \mathbb{S}(\mathfrak{P})}} \, ||P_{\mathfrak{A}} \, {}_{1}TP_{\mathfrak{A}}|| \, = \, \inf_{\substack{\mathfrak{A} \, \epsilon \, \mathbb{S}(\mathfrak{P}) \\ \mathfrak{B} \, \epsilon \, \mathbb{S}(\mathfrak{P})}} \, (\sup_{\substack{\mathfrak{A} \, \epsilon \, \mathfrak{B} \\ \mathfrak{B} \, \epsilon \, \mathbb{S}(\mathfrak{P})}} ||P_{\mathfrak{B}} \, {}_{1}TP_{\mathfrak{B}}||). \end{split}$$

In [6], Halmos initiated the study of quasitriangular operators, namely of those $T \in \mathcal{L}(\mathfrak{H})$ for which q(T) = 0. The case of operators T for which Q(T) = 0 was clarified by Douglas and Pearcy, [3]; they showed that such a T is thin, *i.e.*, $T = \lambda + K$, with λ scalar and K compact.

In this paper we try to illustrate the point of view that the degree of simplicity of T is directly proportional with q(T)/Q(T), giving an insight into the structure of those T for which $q(T)/Q(T) > \frac{1}{2}$. We show, in particular, that the adjoint of an operator satisfying this last condition has non-void point spectrum (see [7], Problem X).

In the first section we characterize Q(T), showing that it is the distance of T to the thin operators. In the second section we give some evaluation for q(T), which allows us to obtain in the third section a structure theorem for operators T with $q(T)/Q(T) > \frac{1}{2}$. A consequence of this result is the following generalization of the theorem of Douglas and Pearcy ([3], Theorem 2): $\lim_{\pi \in S(\mathfrak{P})} ||P_{\pi \perp} T P_{\pi}||$ exists (i.e., q(T) = Q(T)) if and only if $T = \lambda V + S$, with λ scalar, V a non-