## Non-Linear Extremal Problems in $H^{\infty}$

## STEPHEN FISHER

Communicated by G. Springer

Let R be a finite open Riemann surface with boundary  $\Gamma$  and let  $H^{\infty}(R)$  be the algebra of bounded holomorphic functions on R. In this paper we consider the following extremal problem: fix distinct points a and b in R and let

(\*) 
$$M(b; a) = \sup \{|h(b)| : h \in H^{\infty}(R), |h| \leq 1, h(a) = 0,$$

and h has no other zeros on R.

It is clear that a solution to (\*) exists; we investigate the properties of such solutions. A similar problem, where the restraint on the zeros of the competing functions on  $R - \{a\}$  is removed, has been investigated by L. Ahlfors [A1], H. Royden [R], and others. In that case, the class of competing functions is convex, the solution is unique, is analytic across  $\Gamma$ , and has modulus one on  $\Gamma$ . In our problem, the class of competing functions is not convex, a fact which adds difficulties to determining the solutions. However, we prove that every solution to (\*) is analytic over  $\Gamma$  except possibly at a finite number of points, the number of which depends directly on R, and each solution has modulus one at those points of  $\Gamma$  at which it is analytic. We also show that there can be more than one solution to (\*).

Section 1 contains information on positive harmonic functions on R which is needed in Section 2 where we investigate the nature of solutions to (\*). In Section 3, we briefly discuss a more general setting for the non-linear extremal problem (\*) and a related extremal problem.

Section 1. Positive harmonic functions on R. Let m be harmonic measure on  $\Gamma$  for b; if z is any point of R, then the Radon-Nikodym derivative of  $m_z$ , the harmonic measure for z, with respect to m is a smooth function  $P_z$  on  $\Gamma$ . If  $\mu$  is a finite regular Borel measure on  $\Gamma$  we define the harmonic extension of  $\mu$  to R by the rule

(1.1) 
$$\widetilde{\mu}(z) = \int_{\Gamma} P_z \ d\mu.$$

Indiana University Mathematics Journal, ©, Vol. 22, No. 12 (1973)