A Characterization of T₃-Spaces

DARRELL W. HAJEK

Communicated by the Editors

A well known result in general topology is the characterization of $T_{3\frac{1}{4}}$ (i.e., completely regular Hausdorff) spaces as precisely those which can be embedded in compact Hausdorff spaces. In this paper, we establish a similar characterization for T_3 (i.e., regular Hausdorff) spaces. We then utilize this characterization to prove that if a continuous function has a T_3 range and a Wallman extension, then it must be a WO function.

By an extension of a topological space X we will mean a pair $\langle Y, \varphi \rangle$ where Y is a topological space and φ is a dense embedding of X in Y. Clearly the above characterization of $T_{3\frac{1}{2}}$ spaces can be rephrased: A space is $T_{3\frac{1}{2}}$ if and only if it has a compact Hausdorff extension. We will say that an extension $\langle Y, \varphi \rangle$ of a space X is relatively Hausdorff provided that for any point $x \in X$ and any point $y \in Y$ distinct from $\varphi(x)$, there exist disjoint open subsets U and Y of Y containing $\varphi(x)$ and Y respectively.

Proposition 1. If a space X has a compact relatively Hausdorff extension, then X is T_3 .

Proof. It is obvious that any space which has a relatively Hausdorff extension must be a Hausdorff space. Suppose now that $\langle Y, \varphi \rangle$ is a compact relatively Hausdorff extension of X, that A is a closed subset of X, and that $x \in X \sim A$. Since φ is an embedding, $\operatorname{cl}_Y(\varphi[A])$ does not contain $\varphi(x)$. Therefore, since $\langle Y, \varphi \rangle$ is relatively Hausdorff, given any $y \in \operatorname{cl}_Y(\varphi[A])$ there exist disjoint open subsets U_v , V_v of Y such that $y \in U_v$ and $\varphi(x) \in V_v$. Because $\operatorname{cl}_Y(\varphi[A])$ is a closed subset of a compact space it is compact. $\{U_v : y \in \operatorname{cl}_Y(\varphi[A])\}$ is an open cover of $\operatorname{cl}_Y(\varphi[A])$, and so contains a finite subcover $\{U_{v_i} : i = 1, \dots, n\}$. Then $\bigcup_{i=1}^n U_{v_i}$ and $\bigcap_{i=1}^n V_{v_i}$ are disjoint open subsets of Y containing $\varphi[A]$ and $\varphi(x)$ respectively. Therefore $\varphi^{-1}[\bigcup_{i=1}^n U_{v_i}]$ and $\varphi^{-1}[\bigcap_{i=1}^n V_{v_i}]$ are disjoint open subsets of X containing A and X respectively. Hence X must be X.

Recall (from [1], [3], or [4]) that for any T_1 space X, if W(X) denotes the collection of all ultrafilters in the lattice of all closed subsets of X with topology generated by $\{C(A) = \{u \in W(X): A \in u\}: A \text{ a closed subset of } X\}$ as a base