Lipschitz Spaces and Exponentially Integrable Functions

C. J. NEUGEBAUER

Communicated by the Editors

1. We let \mathbf{R}^n be the Euclidean *n*-space, and we consider the Lipschitz spaces $\Lambda(\sigma; p, s; \mathbf{R}^n)$ as defined in [2, 5]. Our main result will imply an imbedding of the Lipschitz spaces $\Lambda(n/p; p, s; \mathbf{R}^n)$ into the class $\exp(L^{s'})$ consisting of all functions $f: \mathbf{R}^n \to \mathbf{R}$ with compact support satisfying $\int \exp(\alpha |f(x)|^{s'}) dx < \infty$ for some $\alpha > 0$, 1/s + 1/s' = 1, where the integration is extended over the support of f.

In view of the fundamental inclusion relationships between the space $\Lambda(\sigma; p, s; \mathbf{R}^n)$ and the space of Bessel potentials $L^p_{\sigma}(\mathbf{R}^n)$ (see [2, 5]), this result extends, for $p \geq 2$, the inequality obtained by Strichartz [4].

The proof is accomplished by estimating $||f||_q$ in terms of the L^p -modulus of continuity of f, and the proof of this estimate is an n-dimensional adaptation and refinement of an argument of Storozhenko [3] whose main result, for n = 1, is the exponential integrability of f if its L^p -modulus of continuity $\omega_p(f; h) = O(h^{1/p})$.

2. For $f \in L^p(\mathbb{R}^n)$ we define

$$\omega_{p}(f;h) = \sup_{|t| \le h} \left\{ \int_{\mathbf{R}^{n}} |f(x+t) - f(x)|^{p} dx \right\}^{1/p}.$$

It is well-known that $\omega_p(f; h)$ is non-decreasing, $\omega_p(f; h) = o(1)$ as $h \to 0$, and, if c is a positive integer, $\omega_p(f; ch) \leq c\omega_p(f; h)$.

Let Q(x; h) be the cube $[x_1, x_1 + h] \times \cdots \times [x_n, x_n + h]$, where $x = (x_1, \dots, x_n)$. If F is the integral of f, i.e., $F(x) = \int_0^{x_1} \cdots \int_0^{x_n} f_0^{x_n}$, we define, in analogy with n = 1, the first and second differences of F as $\Delta F(x; h) = \int_{Q(x;h)} f \Delta^2 F(x; h) = \Delta F(x; 2h) - 2^n \Delta F(x; h)$.

Lemma. Let $f \in L^p(\mathbb{R}^n)$ for some $p \geq 1$. Then for $q \geq p$, $||\Delta^2 F(\cdot;h)||_q \leq ch^{n(1+1/q-1/p)}\omega_p(f;h)$.

Proof. We consider the case $1 \le p < \infty$. The $p = \infty$ situation is similar and easier. By an obvious change of variables we can write