Automorphisms and Equivalence in von Neumann Algebras II

GERT K. PEDERSEN & ERLING STØRMER

Communicated by the Editors

- 1. Introduction. A problem which is often quite difficult to decide is whether the crossed product between a von Neumann algebra and a group of *-automorphisms is semi-finite or not. In the present paper we shall study an aspect of this problem by giving characterizations for the canonical image of a projection in the von Neumann algebra R to be finite in the crossed product R of R and the group G. Our approach is closely related to that in [8] in that we shall use the equivalence relation $\sim_{\mathfrak{G}}$ on the projections in \mathfrak{A} defined in [8] by the automorphisms in G. The main result (Theorem 4.1) states that a projection in α is finite relative to the partial ordering defined by \sim_{α} if and only if its canonical image in & is a finite projection in &. As a consequence we obtain a characterization of such projections in terms of estimates (Theorem 4.2). When R is abelian these theorems can be viewed as results in ergodic theory. Note that if \mathfrak{R} is countably decomposable, then the equivalence relation $\sim_{\mathfrak{G}}$ coincides with the one introduced by Hopf in [2], see [8]. In the final section we comment on the applications to ergodic theory and obtain a sharper version (Theorem 5.3) of Theorem 4.2, which appears to be new, and thus gives a new criterion for the existence of G-invariant σ -finite measures. The result is related to one of Markov [3, 4.8.7] on the existence of finite invariant measures (see also [7]).
- 2. The crossed product. Let \mathfrak{R} be a von Neumann algebra of operators on a Hilbert space \mathfrak{F} , and let G be a (discrete) group of *-automorphisms of \mathfrak{R} . The crossed product of \mathfrak{R} with G is the von Neumann algebra generated by \mathfrak{R} and G in a certain covariant representation. For convenience and in order to fix some notation we indicate here the construction of $\mathfrak{R} * G$ from [9]. This construction differs slightly from the one usually employed when G acts as a unitary transformation group on $B(\mathfrak{F})$ (see [1, Chap. I, \mathfrak{F} 9] and [8, \mathfrak{F} 3]), but gives an isomorphic result.