A Characterization of the Positive Cone of ${f B}({\mathfrak h})$

C. R. DePRIMA & B. K. RICHARD

Communicated by the Editors

 \mathfrak{h} is a complex Hilbert space with inner product (\cdot, \cdot) . $\mathbf{B}(\mathfrak{h})$ is the algebra of all bounded linear operators on \mathfrak{h} . $\mathbf{G}(\mathfrak{h})$ is the group of invertible elements of $\mathbf{B}(\mathfrak{h})$. The subset of accretive operators $\mathbf{A}(\mathfrak{h})$ is defined by

(1)
$$\mathbf{A}(\mathfrak{h}) = \{ T \in \mathbf{B}(\mathfrak{h}) \mid \text{Re } T \equiv \frac{1}{2}(T + T^*) \ge 0 \},$$

while

(2)
$$\mathbf{P}(\mathfrak{h}) = \{ T \in \mathbf{A}(\mathfrak{h}) \mid T = T^* \}$$

is the cone of non-negative self-adjoint operators. The principal result of this paper is the following characterization of $P(\mathfrak{h})$:

Theorem 1.
$$T \in \mathbf{P}(\mathfrak{h})$$
 if and only if $T^n \in \mathbf{A}(\mathfrak{h})$, $n = 1, 2, \cdots$.

This theorem seems to have first been proved by C. R. Johnson [9] in the case in which h is finite dimensional. His proof is decidedly matrical in character, whereas our proof in the general case makes fundamental use of a mapping theorem for numerical ranges due to T. Kato [10]. In Section 5, we observe that the Kato theorem is in reality a mapping theorem for spectral sets.

An immediate consequence of Theorem 1 is that the only semi-groups of accretive operators are semi-groups of non-negative operators which of necessity are cummutative. In Sections 2 and 3 we present the main results along with some generalizations and some discussions of open problems. Section 4 contains an application of the methods of this paper to multiplicative commutators on $G(\mathfrak{h})$ for which we give an improvement of a theorem of Putnam [11].

§1. Notation and preliminaries. For r > 0, $\triangle_r = \{\lambda \, \epsilon \, \mathbf{C} \mid |\lambda| \leq r\}$ is the closed disk of radius r centered at 0. $\Pi = \{\lambda \, \epsilon \, \mathbf{C} \mid \operatorname{Re} \, \lambda \geq 0\}$ is the closed right half plane. For $0 < \alpha < 2$, $S_{\alpha} = \{\lambda \, \epsilon \, \mathbf{C} \mid |\arg \lambda| \leq (\pi/2)\alpha\}$ is the closed wedge symmetric in the non-negative real axis centered at 0 and of opening $\pi \alpha$. If $\Sigma \subset \mathbf{C}$, Σ^0 is the interior of Σ ; $\operatorname{Re} \Sigma = \{t \, \epsilon \, \mathbf{R} \mid t + i \, s \, \epsilon \, \Sigma, \, s \, \epsilon \, \mathbf{R}\}$; $\overline{\operatorname{co}} \Sigma$ is the closed convex hull of Σ ; $\partial \Sigma$ is the boundary of Σ .