On The Stepanov-Almost Periodic Solution of an Abstract Differential Equation

ARIBINDI SATYANARAYAN RAO

Communicated by the Editors

1. Let J be the interval $-\infty < t < \infty$, X a Banach space and X^* the dual space of X. A continuous function $f: J \to X$ is said to be (strongly) almost periodic if, given $\epsilon > 0$, there is a positive real number $\ell = \ell(\epsilon)$ such that any interval of the real line of length ℓ contains at least one point τ for which

(1.1)
$$\sup_{t \in J} ||f(t+\tau) - f(t)|| \le \epsilon.$$

We say that a function $f: J \to X$ is weakly almost periodic if the scalar-valued function $\langle x^*, f(t) \rangle = x^*f(t)$ is almost periodic for each $x^* \in X^*$.

For $1 \leq p < \infty$, a function $f \in L^p_{loc}(J; X)$ is said to be Stepanov-bounded or S^p -bounded on J if

$$(1.2) ||f||_{S^p} = \sup_{t \in \mathcal{T}} \left[\int_t^{t+1} ||f(s)||^p \, ds \right]^{1/p} < \infty.$$

For $1 \leq p < \infty$, a function $f \in L^p_{loc}(J; X)$ is said to be Stepanov-almost periodic or S^p -almost periodic if, given $\epsilon > 0$, there exists a positive real number $\ell = \ell(\epsilon)$ such that any interval of the real line of length ℓ contains at least one point τ for which

(1.3)
$$\sup_{t \in J} \left[\int_{t}^{t+1} ||f(s+\tau) - f(s)||^{p} ds \right]^{1/p} \leq \epsilon.$$

Let $\mathfrak{L}(X, X)$ be the Banach space of all bounded linear operators on X into itself, with the uniform operator topology. An operator-valued function $T: J \to \mathfrak{L}(X, X)$ is called a (strongly) continuous group if

(1.4)
$$T(t_1 + t_2) = T(t_1)T(t_2)$$
 for all $t_1, t_2 \in J$;

(1.5)
$$T(0) = I =$$
the identity operator on X ;

(1.6) for each
$$x \in X$$
, $T(t)x$, $t \in J \to X$ is continuous.