A Note on Non-Quasitriangular Operators II

L. A. FIALKOW

Communicated by the Editors

1. Introduction. Let 30 be a fixed, separable, infinite dimensional, complex Hilbert space, and let $\mathfrak{L}(\mathfrak{K})$ denote the algebra of all bounded linear operators on 30. Let \mathfrak{G} denote the directed set of all finite rank projections in $\mathfrak{L}(\mathfrak{K})$ under the usual ordering, and for each T in $\mathfrak{L}(\mathfrak{K})$ define

$$q(T) = \liminf_{P \in \mathcal{O}} ||(1 - P)TP||$$
 and $Q(T) = \limsup_{P \in \mathcal{O}} ||(1 - P)TP||$.

In [8], Halmos initiated the study of quasitriangular operators and proved that an operator T is quasitriangular if and only if q(T) = 0. In [3], Douglas and Pearcy employed the η -function of Brown and Pearcy (see [11], [3]) to prove that T is a *thin* operator (*i.e.*, an operator that is the sum of a scalar and a compact operator) if and only if Q(T) = 0. The functions q and Q were studied, respectively, by Apostol in [1] and by Foias and Zsidó in [6]. We appreciatively acknowledge access to preliminary versions of [1] and [6].

Let (QT) denote the set of all quasitriangular operators in $\mathfrak{L}(\mathfrak{K})$. One purpose of this note is to prove (in Section 2) the conjecture of Pearcy which states that if T is in $\mathfrak{L}(\mathfrak{K})$, then q(T) is equal to the distance from T to the set (QT), i.e., $q(T) = \inf_{S \in (QT)} ||T - S||$. In Section 3 we prove that if T is in $\mathfrak{L}(\mathfrak{K})$ and S is the compression of T to a subspace of finite codimension in \mathfrak{K} , then q(T) = q(S) and Q(T) = Q(S). A consequence is that if U is a nonunitary isometry in $\mathfrak{L}(\mathfrak{K})$, then the compression of U to a subspace of finite codimension in \mathfrak{K} is unitarily equivalent to a compact perturbation of U. Let (J) denote the ideal in $\mathfrak{L}(\mathfrak{K})$ of all compact operators, and let π denote the natural mapping of $\mathfrak{L}(\mathfrak{K})$ onto the quotient algebra $\mathfrak{L}(\mathfrak{K})/(J)$ (which is commonly known as the Calkin algebra). We prove that similarity in the Calkin algebra preserves quasitriangularity (a result which generalizes [4, Theorem 9]), and that unitary equivalence in the Calkin algebra preserves values of q. In Section 4 we prove that if T is an invertible operator such that $q(T) < 1/||T^{-1}||$, then $q(T^{-1}) \leq ||T^{-1}||^2 \cdot q(T)/(1-q(T)||T^{-1}||)$.

The following two lemmas will be used repeatedly in the sequel.

Lemma A. (A postol [1]). If A and B are in $\mathfrak{L}(\mathfrak{M})$, then $|q(A) - q(B)| \le |A - B|$.