Almost Every Proper Isometry is a Shift

LAWRENCE G. BROWN

Communicated by Joel Pincus

An operator S on a Hilbert space \mathcal{K} is called a shift if there is an orthonormal basis $\{e_n : n = 1, 2, \dots\}$ such that $Se_n = e_{n+1}$. More generally, an operator unitarily equivalent to the direct sum of α shifts is called a shift of multiplicity α , where α can be any positive cardinal number. It is known ([1]) that any isometry T of \mathcal{K} onto a proper subspace can be approximated in norm by a shift, whose multiplicity is necessarily the corank of T. We will show that the set of shifts is a G_{δ} , hence justifying the title, and derive some consequences.

If \mathfrak{A} is a norm closed subset of bounded operators on the Hilbert space \mathfrak{B} , we say almost every element of \mathfrak{A} has property P if $\{T \in \mathfrak{A} : T \text{ has property } P\}$ contains a dense $G_{\mathfrak{b}}$ of \mathfrak{A} . Let \mathfrak{A} denote the set of unitary operators on \mathfrak{B} , $\mathfrak{g}_{\mathfrak{L}}$ the set of isometries of \mathfrak{B} onto the proper subspace \mathfrak{L} , and \mathfrak{g} the set of proper isometries ($\mathfrak{g} = \bigcup_{\mathfrak{L}} \mathfrak{g}_{\mathfrak{L}}$). Also for T an isometry T_{κ} denotes $\{T' : T' \text{ is an isometry and } T' - T \text{ is compact}\}$. Every element of T_{κ} has the same corank as T.

Theorem 1. If \mathfrak{F} is a Hilbert space of countably infinite dimension, then the set of shifts is a $G_{\mathfrak{F}}$ subset of \mathfrak{F} , and hence almost every element of \mathfrak{F} and almost every element of T_{κ} ($T \mathfrak{E} \mathfrak{F}$) is a shift.

Proof. If $T \in \mathcal{G}$ and $\mathfrak{M} = T(\mathfrak{R})^{\perp}$, then the spaces $T^n\mathfrak{M}$, $n = 0, 1, \cdots$, are orthogonal and T is a shift if and only if they span \mathfrak{R} . Now for $\epsilon > 0$ and $x \in \mathfrak{R}$ let $\mathfrak{S}(\epsilon, x) = \{T \in \mathcal{G} : ||x - (I - TT^*)y_0 - \sum_{n=1}^k T^n(I - TT^*)y_n|| < \epsilon$, for some positive integer k and some y_0 , y_1 , \cdots , $y_k \in \mathfrak{R}$. $\mathfrak{S}(\epsilon, x)$ is obviously open. If $\{x_m : m = 1, 2, \cdots\}$ is dense in \mathfrak{R} , then the set of shifts is $\bigcap_{\ell, m=1}^{\infty} \mathfrak{S}(1/\ell, x_m)$. Since it was shown in [1] that shifts are dense in both \mathfrak{G} and T_K , the theorem follows.

Remark. The original motivation for this was to find out whether the map $U \to U^{-1}SU$, from $\mathfrak A$ onto the set of shifts of fixed multiplicity, is open. An affirmative answer would have implied the theorem, but the answer is negative since S_K is separable whereas $\{U \in \mathfrak A : U^{-1}SU \in S_K\}$ is not separable.

Corollary 1. If $U_0 \in \mathbb{Q}$ and $T \in \mathcal{G}$, then for almost every $U \in \mathbb{Q}$ and for almost every $U \in U_{0K}$ UT is a shift.