Compact, Nuclear, and Hilbert-Schmidt Composition Operators On H²

J. H. SHAPIRO & P. D. TAYLOR

Communicated by the Editors

Introduction. Let φ be an analytic function taking the open unit disc U into itself. It is well known [15, Theorem 1], [5, sec. 2.6, page 29] that the *composition operator* C_{φ} defined by the equation

$$C_{\varphi}f(z) = f(\varphi(z))$$
 (z in U)

is a bounded linear operator on each of the Hardy spaces H^p ($0). In this paper we study the interplay between certain geometric properties of <math>\varphi$ and functional analytic properties of C_{φ} ; emphasizing for simplicity the case where C_{φ} operates on the Hilbert space H^2 . For univalent maps φ our results express quantitatively the fact that C_{φ} will be a compact, and perhaps even a Hilbert–Schmidt or trace class (i.e. nuclear) operator if the boundary of $\varphi(U)$ touches the unit circle infrequently and sharply; while it will fail to be compact if the boundary of $\varphi(U)$ touches the unit circle too smoothly, even at a single point. For example, it is easy to see that C_{φ} is compact (in fact, in the trace class) if φ takes U into a disc $|z| \leq r < 1$. On the other hand, if $\varphi(z) = z$, then C_{φ} is the identity operator, which is not compact.

Much of our work generalizes to other H^p spaces, and we discuss these matters in the last section of the paper.

The first results of this type were obtained by H. J. Schwartz [17]. First Schwartz observed [17, Theorem 2.6, page 23] that the condition:

$$|\varphi(e^{it})| < 1 \ a.e.$$

is necessary for the compactness of C_{φ} , but is not sufficient (here $\varphi(e^{it}) = \lim_{r \to 1^{-}} \varphi(re^{it})$, where the limit exists a.e. by Fatou's radial limit theorem [5, Theorem 1.3]). In fact he showed that the function

$$\varphi(z) = (1+z)/2,$$

which takes U onto a disc internally tangent to the unit circle, induces a non-compact composition operator, even though its boundary function has modulus