On Para-Unicellular Operator Algebras

AVRAHAM FEINTUCH

Communicated by the Editors

1. Introduction. Let H be a complex Hilbert space. A linear manifold $L \subseteq H$ is an operator range if there exists a Hilbert space K and a bounded linear transformation $T: K \to H$ such that L = TK. The idea of studying the invariant operator ranges of an algebra of operators was introduced by Foias in [2]. If $\mathfrak A$ is a weakly closed algebra containing the identity, then $\mathfrak A$ is paraunicellular if the invariant operator ranges of $\mathfrak A$ form a chain. Foias showed that if $\mathfrak A$ is para-unicellular, then every invariant operator range of $\mathfrak A$ is closed. In this paper, it is shown that, in fact, every finite inflation of a para-unicellular algebra has this property.

If $\mathfrak A$ is a weakly closed algebra containing the identity on H, then the closed invariant subspaces of $\mathfrak A$ will be denoted by Lat $\mathfrak A$ and the invariant operator ranges of $\mathfrak A$ by Lat_{1/2} $\mathfrak A$. If F is a family of closed subspaces of H, then Alg F will be the algebra of bounded linear operators which leave every member of F invariant. Then $\mathfrak A$ is reflexive if $\mathfrak A = Alg$ Lat $\mathfrak A$. All para-unicellular reflexive algebras were classified by Foias in [2]. Here it is shown that if $\mathfrak A$ is para-unicellular, under certain conditions $\mathfrak A^{(2)}$ is reflexive. Foias' theorem is then obtained as a corollary.

2. Preliminaries. If H is a Hilbert space and n is a positive integer, then $H^{(n)}$ denotes the orthogonal direct sum of n copies of H. If A is any operator on H, $A^{(n)}$ denotes the direct sum of n copies of A acting on $H^{(n)}$ in the standard fashion. If $\mathfrak A$ is an algebra of operators on H, then $\mathfrak A^{(n)} = \{A^{(n)} : A \in \mathfrak A\}$. $\mathfrak A'$ is used to denote the commutant of $\mathfrak A$.

The next lemma is well known and has been a major tool used in the study of the relationship between algebras of operators and their invariant subspaces.

- **Lemma 2.1.** Let \mathfrak{A} be an algebra of operators on H which contains the identity. Then the weak closure of $\mathfrak{A} = \{B : Lat \, \mathfrak{A}^{(n)} \subseteq Lat \, B^{(n)} \text{ for all integers } n \geq 1.\}$ Proof. See [3].
- 3. An example. Most of the results of this paper were motivated by the following matrix algebra on \mathbb{C}^3 .