Remark on Tonelli's Theorem on Integration in Product Spaces-II

A. MUKHERJEA

Communicated by the Editors

Let $(X,\ U,\ \beta_1)$ and $(Y,\ V,\ \beta_2)$ be any two arbitrary measure spaces where U and V are sigma-algebras of subsets of X and Y respectively, and β_1 and β_2 are non-negative non-zero (possibly infinite) measures on U and V respectively. Let $U\times V$ be the sigma-algebra generated by the measurable rectangles. Let β^* be the outer measure induced on the subsets of $X\times Y$ by the measure β defined on the algebra of finite disjoint union of measurable rectangles by $\beta(\bigcup P_i\times Q_i)=\sum \beta_1(P_i)\beta_2(Q_i)$. Then β^* restricted on the class of β^* -measurable sets (see [6], p. 251) containing $U\times V$ as a subset, is a measure that is complete (that is, every subset of a measurable set of measure zero is measurable). The measure β^* restricted on $U\times V$ will be called the product of β_1 and β_2 and denoted by $\beta_1\times \beta_2$. The measure β_1 is called semi-finite if every set in U with infinite β_1 -measure has a subset in U with finite positive measure. Every sigma-finite measure is semifinite, but not conversely.

Counting measure on a uncountable set is a semifinite measure, that is not sigma-finite. One can construct semi-finite non-sigma-finite non-atomic (that is, containing no atom—see p. 321 in (6)) measures in the following way.

Let (X_p, U_p, β_p) be an uncountable family of pairwise disjoint non-atomic probability measure spaces. Let $X_0 = \bigcup X_p$ and $U_0 = \{A \subset X_0 : \text{either } A \text{ or } A^c \text{ intersects at most countably many } X_p \text{ and } A \cap X_p \in U_p\}$. If A in U_0 intersects at most countably many X_p , we define $\beta_0(A) = \sum \beta_p(A \cap X_p)$; otherwise, we define $\beta_0(A) = \infty$. It follows easily that (X_0, U_0, β_0) is a semi-finite non-sigma-finite non-atomic measure space.

One can also consider an important class of measures called Hausdorff measures which provide interesting examples of non-atomic non-sigma-finite, but semi-finite measures. Let Z be an uncountable complete separable ultra-metric space or a n-dimensional Euclidean space. By Theorem 35, p. 63 in [5], there is a monotonic increasing, continuous (from the right) function g(t) with g(0) = 0 such that if β^o is the Hausdorff measure induced by g on Z, then $0 < \beta^o(C) < \infty$ for some compact set C. If we define $h^2(t) = g(t)$ for $t \ge 0$, then $\lim_{t \to \infty} g(t)/h(t) = 0$