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In this paper we propose to study several questions about the smoothness
of solutions to non-linear variational inequalities with obstacles. We shall
describe our conclusions, providing a brief account of their origins. Let @ be
a bounded open connected subset of R” with smooth boundary dQ. Let a(p) =

(@ (p), -+, aup)), p = (P1, -+, Pa) e R”, be a C* vector field which satisfies
the condition:

(1.1) For each compact C C R", there exists a v = v(C) > 0 such that
(@(p) — a(@)(p — q) = v|p — g’ for all p, g & C.

Let ¢ & C*(Q) satisfy ¢ < 0 on 82 and let f ¢ C'(Q). With K = K, the convex
set of lipschitz functions v which satisfy » = ¢ in @ and v = 0 on 92, we consider
the variational inequality

1.2) wek: /;a,»(Du) D;(v — w) de = ff(v —u)dx forall veK.

Our first object is to prove that the second derivatives of a solution u to
(1.2), Dz, are locally bounded in Q, or in other words, that u e C''*(Q). Results
in this direction were first attained by one of the authors in the special cases
n = 2, y concave, f = 0, and a,;(p) = p, or p;/(1 + |p|*)'’* where the conclusion
was necessary to decide the smoothness of the curve 8. Here I = {xeQ: u(x) =
Y(x)} is the coincidence set of the solution. We refer to ([7], [8], or [9]). Very
recently and by a different technique, J. Frehse has published a proof of the
boundedness of the second derivatives in the case a,;(p) = p;, [5].

The method by which we shall approach this problem has been studied
already by one of the authors in ([1], [2]). We consider the variational inequality
as a multivalued equation involving a monotone graph. In this paper we make
a new observation crucial for our proof: that the particular monotone graph
with which we deal is also concave, leads us, by differentiating the original
equation twice, to uniform bounds for second derivatives.
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