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Introduction. In this paper we discuss the invariant maps from Riemannian
metrics on two dimensional manifolds to forms which are given by a local formula
in the derivatives of the metric. For such a map P, we let ord(P) denote the
total number of differentiations involved in the formula. The scalar curvature
K is such a map from metrics to functions which is of order 2. We can construct
other invariant maps from K by using addition, exterior multiplication, exterior
differentiation (d), and the Hodge * operator. In section 1, we show that all
invariant maps of the metric which are given by local formulas are obtained
from K in this way. This result, of course, is false in dimension = 3.

In section 2, we prove an analogue of the Poincare lemma which we state
as follows: suppose that P is an invariant map from metrics to 1-forms such
that P is always a closed 1-form. Then there is a map @ from metrics to functions
such that dQ = P. This implies that every functorial closed form is functorially
exact and that there are no functorial maps from metrics to H'(M; R) except
the zero map.

We assume that the manifold M is oriented in sections 1 through 3; in section
4 we study unoriented manifolds. The assumption that M is oriented permits
us to identify

AT * M) = AT * M).

In section 3, we prove an analogue of the Hodge decomposition theorem.
The classical Hodge decomposition theorem states that if P is any function
such that [ P = 0, then there is a function @ such that DQ = P.D = d * d is
the usual Laplace operator. This theorem has the formal analogue which we
state as follows: let P be a map from metrics to 2-forms (or functions) which is
of ordern > 2. We are excluding the scalar curvature K as a possibility for P
by assuming that n > 2. Suppose that

P(metric) = 0
Tﬂ
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