On Gaussian Sums over $GL(2, \mathbb{Z}/p^n)$ ## ROY FULLER Communicated by the Editors Kondo [1] studied the Gaussian sum $$W(A) = \sum_{g} R(g) \exp(2\pi i \operatorname{trace} (Ag)/p)$$ where R is an irreducible representation of $GL(2, \mathbf{Z}/p)$, p is prime, A is in $GL(2, \mathbf{Z}/p)$, and g is summed over $GL(2, \mathbf{Z}/p)$, and found that $W(A) = W(I)R(A)^{-1}$, and that W(I) is always a nonzero scalar matrix. He actually proved his result for an arbitrary finite field, but I intend to go in the other direction, namely, modulo p^n . If R is thus an irreducible representation by complex matrices of $GL(2, \mathbf{Z}/p^n)$ and A is in $M(2, \mathbf{Z}/p^n)$, define the Gaussian sum W(A) to be $$W(A) = \sum_{a} R(g) \exp(2\pi i \operatorname{trace} (Ag)/p^{n}).$$ When n > 1, W(I) can vanish. Nevertheless, W(A) still behaves somewhat like a scalar multiple of $R(A)^{-1}$, even when A is singular, in the sense that we will be able to prove identities of the type W(A)W(B) = cW(BA), at least for a certain class of representations. It is my ultimate intention to show how these identities lead to identities for the Hecke operators of type R defined by Shimura [2]. 1. Although W(A) depends on A modulo p^n , it is convenient to regard A as lying in $M(2, \mathbf{Z})$. As far as an identity of the type W(A)W(B) = cW(BA) is concerned, we may as well suppose that A and B have p-power determinants, for we can write $A = A_1S$, $B = TB_1$, where A_1 and B_1 have p-power determinants, S and T have determinants not divisible by p, thus determining elements of $GL(2, \mathbf{Z}/p^n)$. Then $W(A)W(B) = R(S)^{-1}W(A_1)W(B_1)R(T)^{-1}$, while $W(BA) = R(S)^{-1}W(B_1A_1)R(T)^{-1}$, so W(A)W(B) = cW(BA) if and only if $W(A_1)W(B_1) = cW(B_1A_1)$. If $\Gamma = SL(2, \mathbf{Z})$, and A is in $M(2, \mathbf{Z})$, then the set $\Gamma A \Gamma$ splits into a finite disjoint union $\cup \Gamma A_i$ of right cosets, where the coset representatives A_i lie