Differentiable Maps with 0-Dimensional Critical Set, II

P. T. CHURCH & J. G. TIMOURIAN

Communicated by A. H. WALLACE

1. Introduction.

- **1.1. Theorem.** Let $f: M^n \to N^p$ be a C^n map with n-p=0, 1 or 2 and $p \ge 2$, let $R_{p-1}(f)$ be its critical set, and let $\dim R_{p-1}(f) = \dim f(R_{p-1}(f)) \le 0$. Then, at each $x \in M^n$, f is locally topologically equivalent to one of the following maps:
 - (a) the projection map $\rho: \mathbb{R}^n \to \mathbb{R}^p$,
 - (b) $\sigma: \mathbf{C} \to \mathbf{C}$ defined by $\sigma(z) = z^d$ ($d = 2, 3, \dots$), where **C** is the complex plane,
- (c) $\tau: \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{R}$ defined by $\tau(z, w) = (2z \cdot \overline{w}, |w|^2 |z|^2)$, where \overline{w} is the complex conjugate of w, or
- (d) a C^n map $\eta: \mathbb{R}^4 \to \mathbb{R}^2$ which is locally topologically equivalent to ρ except at one point.

In particular, either f is locally topologically equivalent to ρ at every point, or (n, p) = (2, 2), (4, 3), or (4, 2). Examples of maps η are the complex polynomial maps defined by $\eta(z, w) = z^i + w^k$, $j > k \ge 2$ [9, p. 3]. The case n - p = 0 or 1 is given in [4], and only n - p = 2 is considered here.

For background information see the introduction of [4]. In particular (1.1) answers a fortiori for $n - p \le 2$ a question of Milnor [9, p. 100] (see [4, (1.7)]).

- 1.2. Conventions. A symbol such as M^n denotes a separable n-manifold, without boundary unless otherwise specified. A manifold with boundary may have an empty boundary. Homology is singular, cohomology is Alexander, coefficients are \mathbf{Z}_2 , and $d^a(X) = \dim(H^a(X))$. The branch set $B_f \subset M^n$ is the set of points at which f fails to be locally topologically equivalent to projection ([4, (1.5)] or [5, (2.1)]). For detailed conventions and definitions see [4].
- 1.3. Outline. Let $f: M^{p+2} \to N^p$ $(p \ge 2)$ be a map with dim $B_f = \dim f(B_f)$ ≤ 0 and $f(B_f)$ locally tame. Under an additional assumption it was shown in [5] that B_f is discrete. In §2, starting with this result, or more precisely with