Saturation Theorems Related to the Mean Ergodic Theorem

D. LEVIATAN

Communicated by the Editors

1. Introduction. Let X be a Banach space and T denote a bounded operator from X into X. The mean ergodic theorem on the behavior of the sequence of arithmetical means of the iterates T^n of a power bounded T (i.e. $||T^n|| \leq M$, $n = 0, 1, 2, \cdots$ for some M) has been extended and generalized in many directions. Among these is a theorem due to Yosida [4] who replaced the power-bounded operator by an operator T with $||T^n|| = \mathbf{o}(n)$ as $n \to \infty$. Observing that the arithmetical means are the Cesàro (C, 1) transform of the iterates T^n the following has been shown recently by Ramanujan and the author [3].

Theorem A. Let X be a Banach space and T a bounded operator from X into X. Let (a_{nk}) be a regular summability matrix and $\{\gamma_n\}$ an increasing sequence of non-negative reals. Assume that

 $T_n x = \sum_{k=0}^{\infty} a_{nk} T^k x$ exists for each $x \in X$ and each n, and that

- (1) $\{T_n x\}$ $(n \ge 0)$ is weakly relatively compact;
- (2) $\sum_{k=0}^{\infty} |a_{nk} a_{n,k+1}| \gamma_{k+1} \to 0, \text{ as } n \to \infty;$
- $(3) ||T^n|| \leq \gamma_n.$

Then for each $x \in X$, $T_n x \to Px$ as $n \to \infty$, where P is the projection of X onto N, the null space of I - T, parallel to \bar{R} , the closure of the range of I - T. Moreover $X = N \oplus \bar{R}$.

If T is power bounded and X is reflexive, then (1) is automatically satisfied. If the matrix (a_{nk}) is the Cesàro matrix (C, r) $(r \ge 1)$ or the Abel "matrix", then (see [3] § 4) $\{\gamma_n\}$ may be taken as any sequence satisfying $\gamma_n = \mathbf{o}(n)$ as $n \to \infty$; and this reduces to Yosida's result [4] for (C, 1).

Recently Butzer and Westphal [1] considered the question of how rapidly the (C, 1)—means of a power-bounded operator T on a reflexive space X converge to P in the strong sense; and also how well the Abel means of a power