The Distant Future

PAUL S. MUHLY

Communicated by Joel Pincus

§1. Introduction. Recall that via a Hilbert space isomorphism each stationary stochastic process, in the wide sense and without any continuity assumption, may be realized by selecting a suitable finite positive measure μ on the Bohr group G (the group dual to the real line R with the discrete topology) and letting the random variables be the characters $\{\chi_{\lambda}\}_{\lambda \in R}$ of G regarded as functions in $L^2(\mu)$. The distant future of the process is the intersection $\wedge_{\tau \in R} \mathfrak{M}_{\tau}$, where \mathfrak{M}_{τ} is the closed linear span of the random variables χ_{λ} with $\lambda > \tau$. In this paper we investigate the prediction problem of deciding in terms of μ when the distant future consists of the zero function alone. If the process is continuous, then well-known criteria are given by the classic results of Szegö [14] and Kolmogorov [8]. On the other hand, if μ is absolutely continuous with respect to Haar measure on G, then criteria may be found in the famous paper of Helson and Lowdenslager [7]. In the present paper, we solve the prediction problem without any supplementary hypothesis whatsoever.

To understand our solution, recall that \mathbf{R} , with the usual topology now, may be continuously imbedded in G as a dense one-parameter subgroup $\{e_t\}_{t\in\mathbf{R}}$ and, therefore, we may regard \mathbf{R} as acting on G as a topological transformation group. The measure μ on G is called quasi-invariant in case its class of null sets is preserved by this action. If μ is quasi-invariant, then $\rho(t, x)$ will denote the derivative $d\mu_t/d\mu(x)$ where $\mu_t(M) = \mu(M - e_t)$ (M a Borel set). Our solution to the prediction problem is this: The distant future of the process consists of the zero function alone if and only if 1) μ is quasi-invariant and 2) there is a μ -null set N such that for each $x \notin N$, $\log \rho(t, x)$, as a function of t, belongs to $L^1(dt/1 + t^2)$.

Observe that the process is continuous precisely when μ is concentrated on the subgroup $\{e_t\}_{t\in\mathbb{R}}$ and, in this case, μ is quasi-invariant precisely when it is equivalent to linear Lebesgue measure dt on \mathbb{R} transplanted to $\{e_t\}_{t\in\mathbb{R}}$. If $w=d\mu/dt$ is regarded as a function on \mathbb{R} , then $\rho(t,x)=w(s-t)/w(s)$, if $x=e_s$ and is zero otherwise. Hence the distant future vanishes when and only when $\log w(t)$ lies in $L^1(dt/1+t^2)$. This is the result of Szegö as extended by