On p-Sidon Sets

G. W. JOHNSON & GORDON S. WOODWARD

Communicated by Ralph Phillips

Introduction. Let G be a compact abelian group with dual group Γ . A subset E of Γ is p-Sidon ($1 \leq p < 2$) if there is a constant α such that each ϕ in C(G) with $\hat{\phi}$ supported on E satisfies $||\hat{\phi}||_p \leq \alpha ||\phi||_{\infty}$. Hence a set is 1-Sidon if and only if it is Sidon. Moreover a duality argument yields that E is p-Sidon if and only if $\ell^p'(E) \subset M(G)^{\hat{}}|_E$, where the latter symbol denotes the restrictions of the Fourier-Stieltjes transforms to E and where p' = p/(p-1). Several of the basic results on p-Sidon sets were independently obtained by Božejko and Pytlik [1], L.-S. Hahn [4], and Edwards and Ross [3]. The article of Edwards and Ross appears to contain all that was known about p-Sidon sets prior to this paper. Here we prove:

Theorem. Suppose A_1 , ..., A_n are mutually disjoint, infinite subsets of Γ whose union is dissociate. Then $E \equiv A_1 + \cdots + A_n$ is p-Sidon if and only if $p \geq 2n/(n+1)$.

For n=2 this theorem is due to Edwards and Ross [3, Corollary 5.5] and is one of the main contributions of their paper.

Let α_p denote the class of p-Sidon sets, for $1 \leq p < 2$. Suppose $1 \leq p_1 < p_2 < 2$. Clearly $\alpha_{p_1} \subset \alpha_{p_2}$. The question as to whether or not the containment is proper is certainly one of the fundamental questions of the theory. The result of Edwards and Ross implies that if $1 \leq p_1 < 4/3 \leq p_2 < 2$, then α_{p_1} is properly contained in α_{p_2} .

Perhaps most importantly it shows that there exists p ($1) such that <math>\alpha_p$ is distinct from the class α_1 of ordinary Sidon sets. Our extension to arbitrary $n \ge 2$ of the Edwards–Ross result implies that an infinite number of the collections α_p are distinct. The general question of whether α_p , is always properly contained in α_p , for $1 \le p_1 < p_2 < 2$ remains unresolved.

Our proof of the theorem above is divided into two sections. In the first section we begin by proving (Lemma 1) that the sum of any n infinite sets is never p-Sidon for p < 2n/(n+1). The lemma is a fairly direct extension of Corollary 2.7 of [3], but its proof does offer some additional technical difficulties and so we include it. One direction of our theorem follows immediately from