Multi-Parameter Spectral Theory

PATRICK J. BROWNE

Communicated by Ralph Phillips

- 1. Introduction. Let H_1 , H_2 , \cdots , H_k be separable Hilbert spaces and $H = \bigotimes_{1 \le r \le k} H_r$, their tensor product. In each space H_r , we assume we have continuous operators T_r , $V_{rs}: H_r \to H_r$, $s = 1, 2, \cdots, k$ such that
 - (i) all the operators T_r , V_{rs} , r, $s = 1, 2, \dots, k$ are Hermitian,
 - (ii) for any choice of $f_r \neq 0$, $f_r \in H_r$, $r = 1, 2, \dots, k$,

$$\det (V_{rs}f_r, f_r)_r > 0$$

where $(\cdot, \cdot)_r$ denotes the inner product in H_r .

Such a system has, in effect, been the basis for discussion of multi-parameter eigenvalue problems by Atkinson [2] and Browne [4]. The results obtained have been applied to multi-parameter systems of second order ordinary differential equations thus covering the work of Faierman [6]. In these investigations the operators V_r , have been assumed compact relative to the operators T_r or alternatively, the operators T_r have been self adjoint with compact resolvent. The differential equation application has been extended to cover so called "singular" cases—see Browne [5]. Here the operators T_r are of Sturm–Liouville type over a half line and thus while being self adjoint do not necessarily have compact resolvent. This suggests the possibility of a more general multi-parameter spectral theory in which the compactness assumptions are removed. It is the aim of this paper to develop, at least partially, such a theory.

2. Operators from determinantal tensor expansions. Following Atkinson [2] we define the operators $\Delta_s: H \to H$, $s = 0, 1, \dots, k$ as follows. Let $f = f_1 \otimes \dots \otimes f_k$ be a decomposable element of H and let α_0 , α_1 , \dots , α_k be arbitrary complex numbers. Then $\Delta_0 f$, \dots , $\Delta_k f$ are defined by the equation

$$\sum_{s=0}^{k} \alpha_s \ \Delta_s f = \bigotimes \begin{vmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_k \\ T_1 f_1 & V_{11} f_1 & \cdots & V_{1k} f_1 \\ \vdots & \ddots & \ddots & \vdots \\ T_k f_k & V_{k1} f_k & \cdots & V_{kk} f_k \end{vmatrix}$$

Indiana University Mathematics Journal, ©, Vol. 24, No. 3 (1974)