On The Iversen-Tsuji Theorem

JOHN B. GARNETT

Communicated by the Editors

1. Let D be an open set in the complex plane, let $z_0 \in \partial D$, and let $f(\zeta)$ be a function defined on D. The cluster set of f at z_0 is

$$Cl(f, z_0) = \bigcap_{r>0} \overline{f(D \cap \{|\zeta - z_0| < r\})}.$$

We write sup |S| for sup $\{w \mid : w \in S\}$. The Iversen-Tsuji theorem [4], [6] states:

Theorem 1. Let E be a compact subset of ∂D with capacity zero. Let $z_0 \in \overline{(\partial D) \setminus E}$, $z_0 \in E$. Then whatever f(z) is analytic on D

(1.1)
$$\sup_{\substack{z \to z_0 \\ z \in (\partial D) \setminus E}} \sup_{|Cl(f, z)|} |Cl(f, z)|.$$

Equivalent formulations of this theorem can be found in [4 p. 17].

Recently two new proofs of Theorem 1 have been given, by Gamelin [1] and by Martio and Rickman [3]. The proof in [3] uses path families and yields a more general theorem on quasiregular mappings in \mathbb{R}^n . The proof in [1] uses some special properties, from [2], of the Banach algebra $H^{\infty}(D)$. It yields a refinement of the theorem in which (1.1) holds when each Cl $(f, z), z \in (\partial D) \setminus E$ is replaced by a smaller cluster set determined by restricting the approach to z from within D. It also yields a similar theorem for product domains in \mathbb{C}^n .

We give a direct proof of a theorem containing Theorem 1 and related results for [1]. This research arose from our trying to simplify the work in [1] and our debt to that paper is large.

Theorem 1 can be viewed as a local version (at a boundary point) of the maximum principle. Our proof uses Vitushkin's localization operator ([7], [2]) and the subharmonicity of $\log |f(\zeta)|$.

The notation $f \in H^{\infty}(D)$ means that f is a bounded analytic function on D. Clearly it suffices to prove Theorem 1 for $f \in H^{\infty}(D)$. It also suffices to assume $z_0 \in \partial D$ is an essential boundary point, which means by definition that not all $f \in H^{\infty}(D)$ extend analytically to a neighborhood of z_0 . We write ||f|| for $\sup |f(\xi)|$, and $\Delta(z, \delta)$ for the disc $\{|\xi - z| < \delta\}$. We write $\sup_{z \in S} |\operatorname{Cl}(f, z)|$ for $\sup_{z \in S} \sup \{|w| : w \in \operatorname{Cl}(f, z)\}$, where $\sup \varnothing = -\infty$.