Homotopy Groups of Diffeomorphism Groups ## JOHN GRIER MILLER Communicated by the Editors 0. This paper contains some results on the homotopy type of the groups of orientation preserving diffeomorphisms of spheres, Diff S^n . C^∞ maps, manifolds, and the C^∞ topology on Diff will be used throughout. It is known [5] that the inclusion of SO(n+1) in Diff S^n induces a splitting $\pi_i(\text{Diff }S^n) \simeq \pi_i(SO(n+1))$ $\bigoplus \pi_i(\text{Diff }(D^n, S^{n-1}))$ for all i, where Diff (D^n, S^{n-1}) is the group of diffeomorphisms of the ball D^n fixing S^{n-1} . There are maps $\gamma_n^i:\pi_i(\text{Diff }(D^n, S^{n-1})) \to \pi_{i-1}(\text{Diff }(D^{n+1}, S^n))$ [16] and $\beta_n:\pi_0(\text{Diff }(D^n, S^{n-1})) \to \Gamma_{n+1}$, Γ_n being the group of concordance classes of differential structures on the PL n-sphere. β_n is defined by extending a representative diffeomorphism to S^n by the identity and using the resulting map to identify two copies of D^{n+1} . The definition of γ_n^i will be given later. β_n is known to be always onto and an isomorphism except possibly for n=4 [6]. Define $\lambda_n^i=\beta_{i+n}\circ\gamma^1_{i+n-1}\circ\cdots\circ\gamma_n^i:\pi_i(\text{Diff }(D^n, S^{n-1}))\to\Gamma_{i+n+1}$. The object is to investigate the image groups of the λ_n^i , Γ^i_{n+i+1} , defined by Gromoll. The result of greatest interest, stated in §1 as Theorem 3, is an application of a theorem of Morlet [14; not yet published in final form]. It says, roughly speaking, that a differentiable homeomorphism $\Sigma^n \to S^n$, Σ^n an exotic sphere, of high rank and with nice singularities, gives rise to nontrivial elements of π_i (Diff (D^{n-i-1}, S^{n-i-2})). §2 discusses a construction due to Bredon [3] which leads to the following applications of Theorem 3. Let bP_{n+1} be the subgroup of Γ_n consisting of exotic spheres bounding smooth parallelizable manifolds. By Kervaire and Milnor [12] there is a monomorphism $\Gamma_n/bP_{n+1} \to \Pi_n/\text{Im } J_n$ onto a subgroup of index at most 2. Browder [4] showed it is onto except possibly when n is of the form $2^i - 2$. Π_n is the stable n-stem and $J_n : \pi_n(SO) \to \Pi_n$ is the stable J-homomorphism. **Theorem 1.** $\Gamma^{i}_{n+i+1}/\Gamma^{i}_{n+i+1} \cap bP_{n+i+2}$ contains the subgroup generated by the images of the composition pairings $$\Gamma_i \otimes \Pi_k \to \Pi_i/\mathrm{Im}\ J_i \otimes \Pi_k \to \Pi_{n+i+1}/\mathrm{Im}\ J_{n+i+1}$$ for j + k = n + i + 1, $i + 1 \le k < j - 1$. 719 Indiana University Mathematics Journal, ©, Vol. 24, No. 8 (1975)