Homotopy Groups of Diffeomorphism Groups

JOHN GRIER MILLER

Communicated by the Editors

0. This paper contains some results on the homotopy type of the groups of orientation preserving diffeomorphisms of spheres, Diff S^n . C^∞ maps, manifolds, and the C^∞ topology on Diff will be used throughout. It is known [5] that the inclusion of SO(n+1) in Diff S^n induces a splitting $\pi_i(\text{Diff }S^n) \simeq \pi_i(SO(n+1))$ $\bigoplus \pi_i(\text{Diff }(D^n, S^{n-1}))$ for all i, where Diff (D^n, S^{n-1}) is the group of diffeomorphisms of the ball D^n fixing S^{n-1} . There are maps $\gamma_n^i:\pi_i(\text{Diff }(D^n, S^{n-1})) \to \pi_{i-1}(\text{Diff }(D^{n+1}, S^n))$ [16] and $\beta_n:\pi_0(\text{Diff }(D^n, S^{n-1})) \to \Gamma_{n+1}$, Γ_n being the group of concordance classes of differential structures on the PL n-sphere. β_n is defined by extending a representative diffeomorphism to S^n by the identity and using the resulting map to identify two copies of D^{n+1} . The definition of γ_n^i will be given later. β_n is known to be always onto and an isomorphism except possibly for n=4 [6]. Define $\lambda_n^i=\beta_{i+n}\circ\gamma^1_{i+n-1}\circ\cdots\circ\gamma_n^i:\pi_i(\text{Diff }(D^n, S^{n-1}))\to\Gamma_{i+n+1}$. The object is to investigate the image groups of the λ_n^i , Γ^i_{n+i+1} , defined by Gromoll.

The result of greatest interest, stated in §1 as Theorem 3, is an application of a theorem of Morlet [14; not yet published in final form]. It says, roughly speaking, that a differentiable homeomorphism $\Sigma^n \to S^n$, Σ^n an exotic sphere, of high rank and with nice singularities, gives rise to nontrivial elements of π_i (Diff (D^{n-i-1}, S^{n-i-2})). §2 discusses a construction due to Bredon [3] which leads to the following applications of Theorem 3.

Let bP_{n+1} be the subgroup of Γ_n consisting of exotic spheres bounding smooth parallelizable manifolds. By Kervaire and Milnor [12] there is a monomorphism $\Gamma_n/bP_{n+1} \to \Pi_n/\text{Im } J_n$ onto a subgroup of index at most 2. Browder [4] showed it is onto except possibly when n is of the form $2^i - 2$. Π_n is the stable n-stem and $J_n : \pi_n(SO) \to \Pi_n$ is the stable J-homomorphism.

Theorem 1. $\Gamma^{i}_{n+i+1}/\Gamma^{i}_{n+i+1} \cap bP_{n+i+2}$ contains the subgroup generated by the images of the composition pairings

$$\Gamma_i \otimes \Pi_k \to \Pi_i/\mathrm{Im}\ J_i \otimes \Pi_k \to \Pi_{n+i+1}/\mathrm{Im}\ J_{n+i+1}$$

for j + k = n + i + 1, $i + 1 \le k < j - 1$.

719

Indiana University Mathematics Journal, ©, Vol. 24, No. 8 (1975)