Restriction of H^{p} Functions to the Diagonal of U^{p}

CHARLES HOROWITZ & DANIEL M. OBERLIN

Communicated by the Editors

Let **C** denote the complex numbers, **U** the open unit disc, **T** the unit circle, and \mathbf{U}^n and \mathbf{T}^n the Cartesian product of n copies of **U** and **T**, respectively. Let dm_n and dA be the Lebesgue measures on \mathbf{T}^n and **U**, respectively, normalized so that $dm_n(\mathbf{T}^n) = dA(\mathbf{U}) = 1$. For $0 , define <math>H^p(\mathbf{U}^n)$ as the space of all analytic functions F on \mathbf{U}^n that satisfy

$$||F||_{\mathfrak{p}}^{\mathfrak{p}} = \sup_{0 \le r \le 1} \int_{\mathbf{T}^n} |F(r\omega)|^{\mathfrak{p}} dm_n(\omega) < \infty,$$

and define $H^{\infty}(\mathbf{U}^n)$ as the space of all bounded analytic functions on \mathbf{U}^n .

If $F \, \varepsilon \, H^p(\mathbf{U}^n)$, one may study F by considering its "slice functions". For each $\omega \, \varepsilon \, \mathbf{T}^n$, we define the slice function $F_\omega : \mathbf{U} \to \mathbf{C}$ by $F_\omega(\lambda) = F(\omega\lambda)$. The function F_ω is always analytic, but simple examples show that if $p < \infty$, then F_ω need not belong to $H^p(\mathbf{U})$. However, Rudin (see [6], pages 53 and 69) has proved that if $F \, \varepsilon \, H^p(\mathbf{U}^2)$ for p = 1 or p = 2, then the slice function f defined by f(z) = F(z, z), or the "diagonalization" of F, always belongs to the Bergman space A^p of analytic functions in $L^p(dA)$. Rudin has then noted that the diagonalization map is actually onto A^2 and has asked whether this map is onto A^1 and also whether these results generalize to other spaces $H^p(\mathbf{U}^n)$. We now answer these questions in the affirmative.

Theorem. For $n \ge 1$, let D_n be the diagonal map, taking analytic functions on \mathbf{U}^n into analytic functions on \mathbf{U} by

$$D_nF(z) = F(z, z, \cdots, z).$$

Then for n > 1, and for $1 \leq p < \infty$, D_n effects a bounded linear mapping of $H^p(\mathbf{U}^n)$ onto $A^{p,n-2}$, where $A^{p,n-2}$ is the space of analytic functions f on \mathbf{U} that satisfy

$$||f||_{p,n-2}^p = \int_{\mathbf{U}} |f(z)|^p (1 - |z|^2)^{n-2} dA(z) < \infty.$$

767

Indiana University Mathematics Journal, ©, Vol. 24, No. 8 (1975)