Certain Topologies on the Space of Temperate Distributions and its Multipliers

JAN KUČERA & KELLY McKENNON

Communicated by the Editors

Let S' be the space of all temperate distributions on Euclidean space \mathbb{R}^m . An inductive topology $T_i(S')$ on S' was defined and exploited in [3]. This topology will be shown herein to be just the strong topology $\beta(S', S)$, where S is the space of rapidly decreasing functions on \mathbb{R}^m .

In [3] the topology $T_i(S')$ led naturally to a construction of a locally convex space \mathfrak{O} of multipliers. It evolved that \mathfrak{O} , algebraically, was just \mathfrak{O}_M . We shall show in this paper that \mathfrak{O} and \mathfrak{O}_M are the same topologically as well.

Notation. The set of non-negative integers and its m-fold product will bear the notation N and N^m respectively. For each $\alpha \in N^m$, $|\alpha|$ will mean $\sum_{i=1}^m \alpha_i$ and, for each $x \in \mathbb{R}^m$, x^{α} will mean $\prod_{i=1}^m x_i^{\alpha_i}$. For $\alpha \in N^m$, D^{α} will denote the differential operator $\partial^{|\alpha|}/\partial x_1^{\alpha_1} \cdots \partial x_m^{\alpha_m}$. The symbol C^{∞} will represent the set of infinitely differentiable functions defined on \mathbb{R}^m . For each $\alpha \in N^m$, $\beta \in N^m$, and $f \in C^{\infty}$, we set

(1)
$$||f||_{\alpha,\beta} = \sup \{|D^{\alpha}(f)(x)| \cdot |x^{\beta}| : x \in \mathbb{R}^{m}\}, \quad \alpha, \beta \in \mathbb{N}^{m}.$$

The set $\{f \in C^{\infty} : ||f||_{\alpha,\beta} < \infty \text{ for all } \alpha,\beta \in N^m\}$ is the space S of rapidly decreasing functions. The family of norms on it given by (1) generates a topology T(S). By $\{||\ ||_n\}_{n=1}^{\infty}$ will be meant a fixed, but arbitrary, family of norms on S which generates T(S) and is such that $||\ ||_{n+1} \ge ||\ ||_n$ for each $n \in N$.

For each $n \in N$, H^n will denote the completion of S with respect to $|| \ ||_n$. For all p, $q \in N$, $\mathfrak{O}_{p,q}$ will be the set of all functions f such that $fh \in H^q$ for all $h \in S$ and $||f||_{p,q} = \sup \{||fh||_q : h \in H^p, ||h||_p \le 1\} < \infty$; thus, $\mathfrak{O}_{p,q}$ may be viewed as a linear space of linear operators from H^p into H^q and will be given the topology generated by the norm $|| \ ||_{p,q}$. For each $q \in N$, the linear space $\bigcup_{p=1}^{\infty} \mathfrak{O}_{p,q}$ will be written as \mathfrak{O}_q and considered to bear the associated inductive limit topology. By \mathfrak{O} will be meant the linear space $\bigcap_{q=1}^{\infty} \mathfrak{O}_q$ endowed with the associated projective limit topology $T(\mathfrak{O})$.

The set \mathfrak{O}_M is the family of all functions $f \in C^{\infty}$ such that, for each $\alpha \in \mathbb{N}^m$, there