On the Solutions of a Nonlinear Dirichlet Problem

M. S. BERGER & E. PODOLAK

Communicated by J. K. Moser

In a recent paper [1], Ambrosetti and Prodi studied the structure of the solutions of the nonlinear Dirichlet problem

$$(1) \qquad \qquad \triangle u + f(u) = g \qquad u|_{\partial\Omega} = 0$$

for g in the Hölder space $C^{0,\alpha}(\Omega)$ ($0 < \alpha < 1$) defined over a smooth bounded domain $\Omega \subset \mathbb{R}^N$. Here Δ is the Laplace operator and f(s) is a C^2 strictly convex real valued function with f(0) = 0 that is related to the eigenvalues ($\lambda_1, \lambda_2, \cdots$) of Δ (on Ω) by the facts:

(2) (i)
$$\lambda_1 < \lim_{s \to \infty} f(s)/s < \lambda_2$$
 (ii) $0 < \lim_{s \to -\infty} f(s)/s < \lambda_1$.

In [1], the following interesting facts concerning (1) were established by regarding the operator $Au = \Delta u + f(u)$ as a differentiable mapping between the Hölder spaces $C^{2,\alpha}(\bar{\Omega})$ and $C^{0,\alpha}(\bar{\Omega})$:

- (A) The singular values of the mapping A (i.e., the image under A of the points u at which the Frechet derivative A'(u) is not invertible) form a connected manifold M of codimension one in $C^{0,\alpha}(\bar{\Omega})$ such that $C^{0,\alpha}(\bar{\Omega}) M$ has exactly two components 0_0 and 0_2 .
- (B) For $g \in O_0$, the equation (1) has no solutions while for $g \in O_2$, (1) has exactly two solutions.
 - (C) Finally, if $g \in M$, (1) has exactly one solution.

However the techniques used in [1] are not adequate to determine necessary and sufficient conditions for g to be an element of either 0_0 , 0_2 or M. In this paper we give an alternate simple Hilbert space approach to the study of (1) that (i) yields (A)–(C) for the more general case when A is regarded as a mapping between the Sobolev spaces $\mathring{W}_{1,2}(\Omega)$ and $W_{-1,2}(\Omega)$ and (ii) provides sharp criteria for g to belong to one of the resulting sets M, 0_0 or 0_2 . Immediate consequences of our results are:

(D) The number of solutions of (1) are determined by the size of the projection