On Scattering by Time-Dependent Perturbations

E. J. P. GEORG SCHMIDT

Communicated by Ralph Phillips

1. Introduction. Let H be a Hilbert space. For $t \in \mathbb{R}$ (the real line), and for $j \in \{0, 1\}$ let $A_j(t)$ be self-adjoint operators in H, satisfying conditions which ensure that the initial value problems

$$dx_i(t)/dt = iA_i(t)x_i(t),$$
 $x_i(s)$ prescribed,

always have unique solutions. Associated with these equations are 2-parameter families $U_i(s, t)$ of evolution operators defined by the requirement that $U_i(s, t)x_i(s) = x_i(t)$ for each solution $x_i(\cdot)$ of the equation. These operators must clearly satisfy the identities

$$U_i(s, s) = I,$$
 $U_i(r, t)U_i(s, r) = U_i(s, t).$

One defines the two wave operators $W_{+s}(A_0(\cdot), A_1(\cdot))$ and $W_{-s}(A_0(\cdot), A_1(\cdot))$ in terms of strong limits by

$$W_{\pm s}(A_0(\cdot), A_1(\cdot)) = s - \lim_{t \to \pm \infty} U_1(t, s)U_0(s, t),$$

when these limits exist. If Range W_{+*} = Range W_{-*} (in which case the wave operators are said to be *complete*), one defines the scattering operator $S^{*}(A_{0}(\cdot), A_{1}(\cdot))$ by

$$S^{s}(A_{0}(\cdot), A_{1}(\cdot)) = W_{+s}(A_{0}(\cdot), A_{1}(\cdot))^{*}W_{-s}(A_{0}(\cdot), A_{1}(\cdot))$$

(where the adjoint of an operator T is denoted by T^*).

The case when $A_i(t)$ are independent of t, so that $T_i(s,t) = \exp[iA_i(t-s)]$, has been extensively studied (see e.g. Kato [9], and the references given there). The definitions we have given, and the elementary properties we now list without proof, involve simple extensions of the familiar theory.

Proposition 1. a) The existence and completeness of $W_{\pm s}(A_0(\cdot), A_1(\cdot))$ for all s follows from the existence and completeness for any particular value of s.