Hadamard Multipliers of Infinite Matrices

WILLIAM H. RUCKLE

Communicated by the Editors

- 1. Introduction. This paper discusses various cases of the following problem:
- 1.1 Given a class L of infinite matrices $F = (F_{ij})$, determine the class M(L) of all matrices G such that $G \cdot F = (G_{ij}F_{ij})$ is in L whenever F is in L. A particular case of 1.1 is the diagonal problem:
- 1.2 If $F \in L$, is the matrix $\Delta F = \text{diag } (F_{11}, F_{22}, \cdots)$ in L? The latter problem has been treated in various papers [5], [9]. [10] and [11]. Problem 1.1 is a special case of the general problem of multipliers of sequence spaces; see e.g. [4] and [6].

In this paper we consider M(L) for L one of the following spaces:

- (a) $L = S \bigotimes_{\theta} T$, θ is a K-homogeneous crossnorm.
- (b) L consists of all continuous, integral, compact or nuclear matrix transformations from S into T.

In both cases we assume S and T are BK-spaces in which the coordinate functionals $\{e_i\}$ form an unconditional basis. Our main results are that in case (a) M(L) contains all matrices of integral transformations from ℓ_1 into m (Theorem 2.1) and that in case (b) M(L) contains all diagonal block matrices (including I) (Theorem 4.2).

We recall some language about topological tensor products. Let X and Y be Banach spaces, and $X \otimes Y$ their tensor product. Two important norms on $X \otimes Y$ are the *greatest crossnorm*

$$\gamma(u) = \inf \{ \sum_{n} ||x_n|| ||y_n|| : \sum_{n} x_n \otimes y_n = u \}$$

and the least crossnorm.

$$\lambda(u) = \sup \{ || \sum_{n} f(x_n) y_n|| : f \in X', ||f|| \leq 1 \}.$$

The completion of $X \otimes Y$ under the norm $\gamma(\lambda)$ is denoted by $X \otimes_{\gamma} Y$ $(X \otimes_{\lambda} Y)$ (p. 65 of [2]).