Logarithms of L^P Translations

T. A. GILLESPIE

Communicated by the Editors

1. Introduction. A bounded linear operator T on a Banach space X is said to have a logarithm if there exists a bounded linear operator S on X such that $\exp S = T$. A necessary condition for an operator to have a logarithm is that it be invertible, whereas a simple sufficient condition for a logarithm to exist is that 0 be in the unbounded component of the resolvent set of the operator (see [4], Sec. 5.4). However, if T is invertible and 0 is in a bounded component of its resolvent set, no general deduction can be made about the existence of a logarithm of T.

Given a locally compact abelian group G and p in the range $1 \leq p \leq \infty$, the translation operator on $L^p(G)$ associated with an element x in G is the bounded linear operator R_x on $L^p(G)$ defined by

$$(R_x f)(y) = f(y + x),$$

where $f \in L^p(G)$ and $g \in G$ a.e. (locally a.e. in the case when $p = \infty$). Each such translation operator is an invertible isometry. It is shown in [3] that, if x is an element of infinite order in the circle group T, then the translation operator on $L^1(T)$ associated with x does not have a logarithm. In contrast, the main result of this paper (Theorem 2) asserts that, for an arbitrary locally compact abelian group G and an arbitrary element x in G, the translation operator R_x on $L^p(G)$ has a logarithm whenever 1 . This is of principal interest when <math>x has infinite order in G. If x has finite order, then the spectrum of R_x consists of a finite set of roots of unity and so does not separate the plane. Hence a logarithm exists by the above sufficiency condition. However, it can be shown (Theorem 1) that, if x has infinite order, then the spectrum of R_x equals the unit circle, and so this sufficiency condition cannot be applied. The proof of the existence of a logarithm in fact relies on several results about multipliers for $L^p(G)$, and these are discussed in §2. Finally, conditions are given on the spectrum of a logarithm of R_x under which it is unique.

Notation. Throughout, G is an arbitrary locally compact abelian group with dual group Γ . The value of $\gamma \in \Gamma$ at $x \in G$ is written as (x, γ) . The integers,