Analytic Embeddings in Logmodular Algebras

BRUCE LUND

Communicated by the Editors

Introduction and summary of results. Suppose A is a function algebra on the compact Hausdorff space X. Let M_A denote the maximal ideal space of A. If A is a logmodular algebra on X, then the non-point Gleason parts of M_A carry analytic structure. Let $H^{\circ}(U)$ be the set of bounded analytic functions on U, the open unit disk in the complex plane. In the theorem below, P carries the relative weak-star topology of M_A which is inherited from A^* , the dual space of A.

Theorem. (Hoffman [4]) Let X be a compact Hausdorff space and suppose A is logmodular on X. If $P \subset M_A$ is a part containing more than one point, then there is a 1-1 continuous map Ψ of U onto P such that $\hat{f} \circ \Psi(z) \in H^{\infty}(U)$ for $f \in A$.

The map Ψ is unique in the sense that if two maps Φ and Ψ satisfy the conclusions of Hoffman's theorem, then $\Phi^{-1} \circ \Psi$ is a conformal self-map of the disk. Wermer [8] earlier had proved this theorem when A is a dirichlet algebra on X. See Stout [7], p. 184 for further references.

In this paper we study the map Ψ with the added assumption that Ψ is a homeomorphism of U onto P, where P has the relative weak-star topology of M_A . When Ψ is a homeomorphism of U onto P that satisfies the conclusions of Hoffman's theorem, we will call Ψ an analytic embedding. If X is metric and $\bar{P} \setminus P \subset X$ (where \bar{P} is the weak-star closure of P in M_A), we show that Ψ extends radially to T, the unit circle, to define an essentially 1-1 map Ψ of T into X. We show that Ψ is measurable in the sense that $\Psi^{-1}(V)$ is Lebesgue measurable for Borel sets V and that $\bar{f} \circ \psi(e^{it}) \in H^{\infty}(U)$ for $f \in A$. We use Ψ to characterize the representing measures supported on X for points of P and to gain information about the annihilating measures of A.

§1. Notations and definitions. Let X be a compact Hausdorff space and denote by C(X) the set of complex-valued continuous functions on X. We say that A is a function algebra on X if A is a uniformly closed point-separating subalgebra of C(X) which contains the constant functions. Equipped with the