Fundamental Groups of Plane Curves and their Duals

HAROLD ABELSON

Let C be an algebraic curve in the complex projective plane. The study of the fundamental group $\pi_1(\mathbf{P}^2 - C)$ was initiated by Enriques, Lefschetz, Zariski [3] and van Kampen [1], and remains an active common ground for topology and algebraic geometry. A well-known conjecture in this area says that if C is an irreducible plane curve of degree n whose only singularities are ordinary double points, then $\pi_1(\mathbf{P}^2 - C)$ is cyclic of order n. Zariski showed that this would follow from results on deformations of singular curves announced by Severi, but the latter's proofs are considered incomplete. This note establishes a "dual" to the conjecture: the fundamental group of the curve dual to C is not cyclic.

More precisely, the lines in \mathbf{P}^2 form a projective space $(\mathbf{P}^2)^*$ which is isomorphic to \mathbf{P}^2 . If $C \subset \mathbf{P}^2$ is an algebraic curve, then the lines tangent to C form an algebraic curve C^* in $(\mathbf{P}^2)^*$. If C is irreducible then C^* is also, and conversely. (See Walker [2].) Our result is:

Theorem. Let $C \subset P^2$ be an irreducible curve of degree n whose only singularities are ordinary double points. Then $\pi_1((\mathbf{P}^2)^* - C^*)$ maps onto S_n , the symmetric group on n letters.

For n > 2 this shows immediately that $\pi_1((\mathbf{P}^2)^* - C^*)$ cannot be abelian, or even nilpotent.

The map to the symmetric group is obtained by exhibiting C as a branched cover by means of a "Lefschetz pencil." Choose a line L^* in $(\mathbf{P}^2)^*$ which represents the pencil of lines through some point p in $\mathbf{P}^2 - C$. Map C to L^* by sending each x in C to the line joining x to p. This branches C over L^* and the branch points are given by the "singular lines" in the pencil—those lines which are tangent to C or which pass through the singularities of C. We can identify the singular lines as points in $(\mathbf{P}^2)^*$ as follows: Lines tangent to C are dual to points of C^* . Lines through the singularities of C are dual to points lying on multiple tangents to C^* . For example, lines through a double point of C are dual to points on a double tangent to C^* , and lines through a cusp of C are dual to points on a flex tangent to C^* .

Indiana University Mathematics Journal, ©, Vol. 25, No. 1 (1976)